skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites

Abstract

Efficient wide-bandgap perovskite solar cells (PSCs) enable high-efficiency tandem photovoltaics when combined with crystalline silicon and other low-bandgap absorbers. However, wide-bandgap PSCs today exhibit performance far inferior to that of sub-1.6-eV bandgap PSCs due to their tendency to form a high density of deep traps. Here, we show that healing the deep traps in wide-bandgap perovskites—in effect, increasing the defect tolerance via cation engineering—enables further performance improvements in PSCs. We achieve a stabilized power conversion efficiency of 20.7% for 1.65-eV bandgap PSCs by incorporating dipolar cations, with a high open-circuit voltage of 1.22 V and a fill factor exceeding 80%. We also obtain a stabilized efficiency of 19.1% for 1.74-eV bandgap PSCs with a high open-circuit voltage of 1.25 V. From density functional theory calculations, we find that the presence and reorientation of the dipolar cation in mixed cation–halide perovskites heals the defects that introduce deep trap states.

Authors:
 [1];  [2];  [2];  [2];  [2];  [2];  [3];  [2];  [4];  [2]; ORCiD logo [2];  [2]; ORCiD logo [5];  [6];  [2]; ORCiD logo [2]; ORCiD logo [2];  [3]; ORCiD logo [2]
  1. Univ. of Toronto, ON (Canada). Dept. of Electrical and Computer Engineering; Nanjing Univ. (China). National Lab. of Solid State Microstructures. Collaborative Innovation Centre of Advanced Microstructures. Jiangsu Key Lab. of Artificial Functional Materials. College of Engineering and Applied Sciences
  2. Univ. of Toronto, ON (Canada). Dept. of Electrical and Computer Engineering
  3. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  4. Univ. of Toronto, ON (Canada). Dept. of Electrical and Computer Engineering; Henan Univ., Kaifeng (China). Key Lab. of Photovoltaic Materials. Dept. of Physics and Electronics
  5. Univ. of Toronto, ON (Canada). Dept. of Electrical and Computer Engineering; KU Leuven (Belgium). Dept. of Chemistry
  6. KU Leuven (Belgium). Dept. of Chemistry
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); Office of Naval Research (ONR) (United States); King Abdullah Univ. of Science and Technology (KAUST) (Saudi Arabia); Ontario Research Fund Research Excellence Program (Canada); Natural Sciences and Engineering Research Council of Canada (NSERC); Netherlands Organisation for Scientific Research (NWO); Thousand Talent Program for Young Outstanding Scientists (China)
OSTI Identifier:
1477412
Grant/Contract Number:  
AC02-05CH11231; N00014-17-1-2524; OSR-2017-CPF-3321-03; 680-50-1511
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; devices for energy harvesting; solar cells

Citation Formats

Tan, Hairen, Che, Fanglin, Wei, Mingyang, Zhao, Yicheng, Saidaminov, Makhsud I., Todorović, Petar, Broberg, Danny, Walters, Grant, Tan, Furui, Zhuang, Taotao, Sun, Bin, Liang, Zhiqin, Yuan, Haifeng, Fron, Eduard, Kim, Junghwan, Yang, Zhenyu, Voznyy, Oleksandr, Asta, Mark, and Sargent, Edward H. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. United States: N. p., 2018. Web. doi:10.1038/s41467-018-05531-8.
Tan, Hairen, Che, Fanglin, Wei, Mingyang, Zhao, Yicheng, Saidaminov, Makhsud I., Todorović, Petar, Broberg, Danny, Walters, Grant, Tan, Furui, Zhuang, Taotao, Sun, Bin, Liang, Zhiqin, Yuan, Haifeng, Fron, Eduard, Kim, Junghwan, Yang, Zhenyu, Voznyy, Oleksandr, Asta, Mark, & Sargent, Edward H. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. United States. doi:10.1038/s41467-018-05531-8.
Tan, Hairen, Che, Fanglin, Wei, Mingyang, Zhao, Yicheng, Saidaminov, Makhsud I., Todorović, Petar, Broberg, Danny, Walters, Grant, Tan, Furui, Zhuang, Taotao, Sun, Bin, Liang, Zhiqin, Yuan, Haifeng, Fron, Eduard, Kim, Junghwan, Yang, Zhenyu, Voznyy, Oleksandr, Asta, Mark, and Sargent, Edward H. Mon . "Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites". United States. doi:10.1038/s41467-018-05531-8. https://www.osti.gov/servlets/purl/1477412.
@article{osti_1477412,
title = {Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites},
author = {Tan, Hairen and Che, Fanglin and Wei, Mingyang and Zhao, Yicheng and Saidaminov, Makhsud I. and Todorović, Petar and Broberg, Danny and Walters, Grant and Tan, Furui and Zhuang, Taotao and Sun, Bin and Liang, Zhiqin and Yuan, Haifeng and Fron, Eduard and Kim, Junghwan and Yang, Zhenyu and Voznyy, Oleksandr and Asta, Mark and Sargent, Edward H.},
abstractNote = {Efficient wide-bandgap perovskite solar cells (PSCs) enable high-efficiency tandem photovoltaics when combined with crystalline silicon and other low-bandgap absorbers. However, wide-bandgap PSCs today exhibit performance far inferior to that of sub-1.6-eV bandgap PSCs due to their tendency to form a high density of deep traps. Here, we show that healing the deep traps in wide-bandgap perovskites—in effect, increasing the defect tolerance via cation engineering—enables further performance improvements in PSCs. We achieve a stabilized power conversion efficiency of 20.7% for 1.65-eV bandgap PSCs by incorporating dipolar cations, with a high open-circuit voltage of 1.22 V and a fill factor exceeding 80%. We also obtain a stabilized efficiency of 19.1% for 1.74-eV bandgap PSCs with a high open-circuit voltage of 1.25 V. From density functional theory calculations, we find that the presence and reorientation of the dipolar cation in mixed cation–halide perovskites heals the defects that introduce deep trap states.},
doi = {10.1038/s41467-018-05531-8},
journal = {Nature Communications},
number = ,
volume = 9,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Charge Carriers in Hybrid Organic–Inorganic Lead Halide Perovskites Might Be Protected as Large Polarons
journal, November 2015


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Understanding the Role of Cesium and Rubidium Additives in Perovskite Solar Cells: Trap States, Charge Transport, and Recombination
journal, January 2018

  • Hu, Yinghong; Hutter, Eline M.; Rieder, Philipp
  • Advanced Energy Materials, Vol. 8, Issue 16
  • DOI: 10.1002/aenm.201703057

Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21%
journal, October 2017


23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
journal, February 2017

  • Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.9

Metal halide perovskite tandem and multiple-junction photovoltaics
journal, November 2017

  • Eperon, Giles E.; Hörantner, Maximilian T.; Snaith, Henry J.
  • Nature Reviews Chemistry, Vol. 1, Issue 12
  • DOI: 10.1038/s41570-017-0095

Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells
journal, April 2017


Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics
journal, January 2015

  • Hoke, Eric T.; Slotcavage, Daniel J.; Dohner, Emma R.
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC03141E

Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures
journal, January 2017

  • Jäger, Klaus; Korte, Lars; Rech, Bernd
  • Optics Express, Vol. 25, Issue 12
  • DOI: 10.1364/OE.25.00A473

Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells
journal, January 2016


Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells
journal, June 2017


Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se 2 based heterojunctions
journal, October 1996

  • Walter, T.; Herberholz, R.; Müller, C.
  • Journal of Applied Physics, Vol. 80, Issue 8
  • DOI: 10.1063/1.363401

Statistics of the Recombinations of Holes and Electrons
journal, September 1952


Rubidium Multication Perovskite with Optimized Bandgap for Perovskite-Silicon Tandem with over 26% Efficiency
journal, April 2017

  • Duong, The; Wu, YiLiang; Shen, Heping
  • Advanced Energy Materials, Vol. 7, Issue 14
  • DOI: 10.1002/aenm.201700228

Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells
journal, December 2014

  • Shao, Yuchuan; Xiao, Zhengguo; Bi, Cheng
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6784

Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency
journal, April 2018

  • Braly, Ian L.; deQuilettes, Dane W.; Pazos-Outón, Luis M.
  • Nature Photonics, Vol. 12, Issue 6
  • DOI: 10.1038/s41566-018-0154-z

"Special points for Brillouin-zone integrations"—a reply
journal, August 1977


Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions
journal, January 2017

  • Hörantner, Maximilian T.; Snaith, Henry J.
  • Energy & Environmental Science, Vol. 10, Issue 9
  • DOI: 10.1039/C7EE01232B

High Defect Tolerance in Lead Halide Perovskite CsPbBr 3
journal, January 2017


Instilling defect tolerance in new compounds
journal, September 2017

  • Walsh, Aron; Zunger, Alex
  • Nature Materials, Vol. 16, Issue 10
  • DOI: 10.1038/nmat4973

Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices
journal, January 2018

  • Dupré, Olivier; Niesen, Bjoern; De Wolf, Stefaan
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 2
  • DOI: 10.1021/acs.jpclett.7b02277

Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation
journal, January 2018


Efficient and stable solution-processed planar perovskite solar cells via contact passivation
journal, February 2017


Screening in crystalline liquids protects energetic carriers in hybrid perovskites
journal, September 2016


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells
journal, April 2014

  • Frost, Jarvist M.; Butler, Keith T.; Brivio, Federico
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl500390f

Materials Processing Routes to Trap-Free Halide Perovskites
journal, October 2014

  • Buin, Andrei; Pietsch, Patrick; Xu, Jixian
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl502612m

How Methylammonium Cations and Chlorine Dopants Heal Defects in Lead Iodide Perovskites
journal, January 2018

  • Nan, Guangjun; Zhang, Xu; Abdi-Jalebi, Mojtaba
  • Advanced Energy Materials, Vol. 8, Issue 13
  • DOI: 10.1002/aenm.201702754

High-efficiency crystalline silicon solar cells: status and perspectives
journal, January 2016

  • Battaglia, Corsin; Cuevas, Andres; De Wolf, Stefaan
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C5EE03380B

Photo-induced halide redistribution in organic–inorganic perovskite films
journal, May 2016

  • deQuilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11683

Defects in perovskite-halides and their effects in solar cells
journal, October 2016


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Large polarons in lead halide perovskites
journal, August 2017

  • Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan
  • Science Advances, Vol. 3, Issue 8
  • DOI: 10.1126/sciadv.1701217

Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements
journal, August 2016


The Potential of Multijunction Perovskite Solar Cells
journal, October 2017


Iodine chemistry determines the defect tolerance of lead-halide perovskites
journal, January 2018

  • Meggiolaro, Daniele; Motti, Silvia G.; Mosconi, Edoardo
  • Energy & Environmental Science, Vol. 11, Issue 3
  • DOI: 10.1039/C8EE00124C

Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells
journal, May 2017


Dielectric Response: Answer to Many Questions in the Methylammonium Lead Halide Solar Cell Absorbers
journal, May 2017

  • Anusca, Irina; Balčiūnas, Sergejus; Gemeiner, Pascale
  • Advanced Energy Materials, Vol. 7, Issue 19
  • DOI: 10.1002/aenm.201700600

Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
journal, January 2016

  • Saliba, Michael; Matsui, Taisuke; Seo, Ji-Youn
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03874J

The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells
journal, May 2015

  • Leguy, Aurelien M. A.; Frost, Jarvist Moore; McMahon, Andrew P.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8124

Roadmap and roadblocks for the band gap tunability of metal halide perovskites
journal, January 2017

  • Unger, E. L.; Kegelmann, L.; Suchan, K.
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00404D

Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites
journal, November 2017

  • Fabini, Douglas H.; Siaw, Ting Ann; Stoumpos, Constantinos C.
  • Journal of the American Chemical Society, Vol. 139, Issue 46
  • DOI: 10.1021/jacs.7b09536

Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
journal, September 2016


Progress in Tandem Solar Cells Based on Hybrid Organic-Inorganic Perovskites
journal, March 2017

  • Chen, Bo; Zheng, Xiaopeng; Bai, Yang
  • Advanced Energy Materials, Vol. 7, Issue 14
  • DOI: 10.1002/aenm.201602400

Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients
journal, October 1992


Polar rotor scattering as atomic-level origin of low mobility and thermal conductivity of perovskite CH3NH3PbI3
journal, June 2017

  • Li, Bing; Kawakita, Yukinobu; Liu, Yucheng
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms16086

The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics
journal, January 2015

  • Duan, Hsin-Sheng; Zhou, Huanping; Chen, Qi
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 1
  • DOI: 10.1039/C4CP04479G

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Compositional engineering of perovskite materials for high-performance solar cells
journal, January 2015

  • Jeon, Nam Joong; Noh, Jun Hong; Yang, Woon Seok
  • Nature, Vol. 517, Issue 7535
  • DOI: 10.1038/nature14133

Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation
journal, July 2016


Perovskite-perovskite tandem photovoltaics with optimized band gaps
journal, October 2016


Benzylamine-Treated Wide-Bandgap Perovskite with High Thermal-Photostability and Photovoltaic Performance
journal, September 2017


ABX3 Perovskites for Tandem Solar Cells
journal, December 2017


Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy
journal, April 2017


    Works referencing / citing this record:

    Two‐Terminal Perovskites Tandem Solar Cells: Recent Advances and Perspectives
    journal, May 2019


    Molecular modulator for stable inverted planar perovskite solar cells with efficiency enhanced by interface engineering
    journal, January 2019

    • Zhao, Z. Q.; You, S.; Huang, J.
    • Journal of Materials Chemistry C, Vol. 7, Issue 31
    • DOI: 10.1039/c9tc03259b

    Two‐Terminal Perovskites Tandem Solar Cells: Recent Advances and Perspectives
    journal, May 2019


    Molecular modulator for stable inverted planar perovskite solar cells with efficiency enhanced by interface engineering
    journal, January 2019

    • Zhao, Z. Q.; You, S.; Huang, J.
    • Journal of Materials Chemistry C, Vol. 7, Issue 31
    • DOI: 10.1039/c9tc03259b