skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Guiding kinetic trajectories between jammed and unjammed states in 2D colloidal nanocrystal-polymer assemblies with zwitterionic ligands

Abstract

Mesostructured matter composed of colloidal nanocrystals in solidified architectures abounds with broadly tunable catalytic, magnetic, optoelectronic, and energy storing properties. Less common are liquid-like assemblies of colloidal nanocrystals in a condensed phase, which may have different energy transduction behaviors owing to their dynamic character. Limiting investigations into dynamic colloidal nanocrystal architectures is the lack of schemes to control or redirect the tendency of the system to solidify. We show how to solidify and subsequently reconfigure colloidal nanocrystal assemblies dimensionally confined to a liquid-liquid interface. Our success in this regard hinged on the development of competitive chemistries anchoring or releasing the nanocrystals to or from the interface. With these chemistries, it was possible to control the kinetic trajectory between quasi–two-dimensional jammed (solid-like) and unjammed (liquid-like) states. In future schemes, it may be possible to leverage this control to direct the formation or destruction of explicit physical pathways for energy carriers to migrate in the system in response to an external field.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2];  [1]; ORCiD logo [3];  [2];  [3];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [4]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Molecular Foundry; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Molecular Foundry
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Molecular Foundry. Materials Sciences Division
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of Massachusetts, Amherst, MA (United States). Conte Center for Polymer Research. Polymer Science and Engineering Dept.; Beijing Univ. of Chemical Technology (China). Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Tohoku Univ., Sendai (Japan). World Premier International Research Center Initiative–Advanced Inst. for Materials Research (WPI-AIMR)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1477357
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 8; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Zhang, Ziyi, Jiang, Yufeng, Huang, Caili, Chai, Yu, Goldfine, Elise, Liu, Feng, Feng, Wenqian, Forth, Joe, Williams, Teresa E., Ashby, Paul D., Russell, Thomas P., and Helms, Brett A. Guiding kinetic trajectories between jammed and unjammed states in 2D colloidal nanocrystal-polymer assemblies with zwitterionic ligands. United States: N. p., 2018. Web. doi:10.1126/sciadv.aap8045.
Zhang, Ziyi, Jiang, Yufeng, Huang, Caili, Chai, Yu, Goldfine, Elise, Liu, Feng, Feng, Wenqian, Forth, Joe, Williams, Teresa E., Ashby, Paul D., Russell, Thomas P., & Helms, Brett A. Guiding kinetic trajectories between jammed and unjammed states in 2D colloidal nanocrystal-polymer assemblies with zwitterionic ligands. United States. doi:10.1126/sciadv.aap8045.
Zhang, Ziyi, Jiang, Yufeng, Huang, Caili, Chai, Yu, Goldfine, Elise, Liu, Feng, Feng, Wenqian, Forth, Joe, Williams, Teresa E., Ashby, Paul D., Russell, Thomas P., and Helms, Brett A. Fri . "Guiding kinetic trajectories between jammed and unjammed states in 2D colloidal nanocrystal-polymer assemblies with zwitterionic ligands". United States. doi:10.1126/sciadv.aap8045. https://www.osti.gov/servlets/purl/1477357.
@article{osti_1477357,
title = {Guiding kinetic trajectories between jammed and unjammed states in 2D colloidal nanocrystal-polymer assemblies with zwitterionic ligands},
author = {Zhang, Ziyi and Jiang, Yufeng and Huang, Caili and Chai, Yu and Goldfine, Elise and Liu, Feng and Feng, Wenqian and Forth, Joe and Williams, Teresa E. and Ashby, Paul D. and Russell, Thomas P. and Helms, Brett A.},
abstractNote = {Mesostructured matter composed of colloidal nanocrystals in solidified architectures abounds with broadly tunable catalytic, magnetic, optoelectronic, and energy storing properties. Less common are liquid-like assemblies of colloidal nanocrystals in a condensed phase, which may have different energy transduction behaviors owing to their dynamic character. Limiting investigations into dynamic colloidal nanocrystal architectures is the lack of schemes to control or redirect the tendency of the system to solidify. We show how to solidify and subsequently reconfigure colloidal nanocrystal assemblies dimensionally confined to a liquid-liquid interface. Our success in this regard hinged on the development of competitive chemistries anchoring or releasing the nanocrystals to or from the interface. With these chemistries, it was possible to control the kinetic trajectory between quasi–two-dimensional jammed (solid-like) and unjammed (liquid-like) states. In future schemes, it may be possible to leverage this control to direct the formation or destruction of explicit physical pathways for energy carriers to migrate in the system in response to an external field.},
doi = {10.1126/sciadv.aap8045},
journal = {Science Advances},
number = 8,
volume = 4,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quasicrystalline order in self-assembled binary nanoparticle superlattices
journal, October 2009

  • Talapin, Dmitri V.; Shevchenko, Elena V.; Bodnarchuk, Maryna I.
  • Nature, Vol. 461, Issue 7266
  • DOI: 10.1038/nature08439

Ordered Mesoporous Materials from Metal Nanoparticle-Block Copolymer Self-Assembly
journal, June 2008

  • Warren, S. C.; Messina, L. C.; Slaughter, L. S.
  • Science, Vol. 320, Issue 5884, p. 1748-1752
  • DOI: 10.1126/science.1159950

Kinetically driven self assembly of highly ordered nanoparticle monolayers
journal, March 2006

  • Bigioni, Terry P.; Lin, Xiao-Min; Nguyen, Toan T.
  • Nature Materials, Vol. 5, Issue 4
  • DOI: 10.1038/nmat1611

Influence of Surface Composition on Electronic Transport through Naked Nanocrystal Networks
journal, March 2014

  • Rosen, Evelyn L.; Sawvel, April M.; Milliron, Delia J.
  • Chemistry of Materials, Vol. 26, Issue 7
  • DOI: 10.1021/cm404149u

Directional Carrier Transfer in Strongly Coupled Binary Nanocrystal Superlattice Films Formed by Assembly and in Situ Ligand Exchange at a Liquid–Air Interface
journal, February 2017

  • Wu, Yaoting; Li, Siming; Gogotsi, Natalie
  • The Journal of Physical Chemistry C, Vol. 121, Issue 8
  • DOI: 10.1021/acs.jpcc.6b12327

Structured Liquids with pH-Triggered Reconfigurability
journal, May 2016


Assembly at liquid interfaces
journal, September 2010


Elastometry of Deflated Capsules: Elastic Moduli from Shape and Wrinkle Analysis
journal, September 2013

  • Knoche, Sebastian; Vella, Dominic; Aumaitre, Elodie
  • Langmuir, Vol. 29, Issue 40
  • DOI: 10.1021/la402322g

Exceptionally Mild Reactive Stripping of Native Ligands from Nanocrystal Surfaces by Using Meerwein’s Salt
journal, December 2011

  • Rosen, Evelyn L.; Buonsanti, Raffaella; Llordes, Anna
  • Angewandte Chemie International Edition, Vol. 51, Issue 3, p. 684-689
  • DOI: 10.1002/anie.201105996

Constructing Functional Mesostructured Materials from Colloidal Nanocrystal Building Blocks
journal, August 2013

  • Milliron, Delia J.; Buonsanti, Raffaella; Llordes, Anna
  • Accounts of Chemical Research, Vol. 47, Issue 1
  • DOI: 10.1021/ar400133k

Design of Pt–Pd Binary Superlattices Exploiting Shape Effects and Synergistic Effects for Oxygen Reduction Reactions
journal, December 2012

  • Kang, Yijin; Ye, Xingchen; Chen, Jun
  • Journal of the American Chemical Society, Vol. 135, Issue 1
  • DOI: 10.1021/ja3097527

Colloidal Nanocrystal Frameworks
journal, April 2015

  • Helms, Brett A.; Williams, Teresa E.; Buonsanti, Raffaella
  • Advanced Materials, Vol. 27, Issue 38
  • DOI: 10.1002/adma.201500127

Stabilizing Liquid Drops in Nonequilibrium Shapes by the Interfacial Jamming of Nanoparticles
journal, October 2013


Enhanced Thermal Stability and Magnetic Properties in NaCl-Type FePt–MnO Binary Nanocrystal Superlattices
journal, August 2011

  • Dong, Angang; Chen, Jun; Ye, Xingchen
  • Journal of the American Chemical Society, Vol. 133, Issue 34
  • DOI: 10.1021/ja2057314

Mechanistic Insight into the Formation of Cationic Naked Nanocrystals Generated under Equilibrium Control
journal, October 2014

  • Doris, Sean E.; Lynch, Jared J.; Li, Changyi
  • Journal of the American Chemical Society, Vol. 136, Issue 44
  • DOI: 10.1021/ja508675t

Fine-Tuning Nanoparticle Packing at Water–Oil Interfaces Using Ionic Strength
journal, September 2017


Interface-Induced Nucleation, Orientational Alignment and Symmetry Transformations in Nanocube Superlattices
journal, January 2012

  • Choi, Joshua J.; Bian, Kaifu; Baumgardner, William J.
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl3026289

A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals
journal, February 2011

  • Dong, Angang; Ye, Xingchen; Chen, Jun
  • Journal of the American Chemical Society, Vol. 133, Issue 4, p. 998-1006
  • DOI: 10.1021/ja108948z

Assembly of Ligand-Stripped Nanocrystals into Precisely Controlled Mesoporous Architectures
journal, June 2012

  • Buonsanti, Raffaella; Pick, Teresa E.; Krins, Natacha
  • Nano Letters, Vol. 12, Issue 7, p. 3872-3877
  • DOI: 10.1021/nl302206s

Charge transport and localization in atomically coherent quantum dot solids
journal, February 2016

  • Whitham, Kevin; Yang, Jun; Savitzky, Benjamin H.
  • Nature Materials, Vol. 15, Issue 5
  • DOI: 10.1038/nmat4576

Colloidal superparticles from nanoparticle assembly
journal, January 2013

  • Wang, Tie; LaMontagne, Derek; Lynch, Jared
  • Chem. Soc. Rev., Vol. 42, Issue 7
  • DOI: 10.1039/C2CS35318K

Interfacial displacement of nanoparticles by surfactant molecules in emulsions
journal, September 2010

  • Vashisth, Charu; Whitby, Catherine P.; Fornasiero, Daniel
  • Journal of Colloid and Interface Science, Vol. 349, Issue 2
  • DOI: 10.1016/j.jcis.2010.05.089

Self-Regulated Nanoparticle Assembly at Liquid/Liquid Interfaces: A Route to Adaptive Structuring of Liquids
journal, August 2017


Engineering Catalytic Contacts and Thermal Stability: Gold/Iron Oxide Binary Nanocrystal Superlattices for CO Oxidation
journal, January 2013

  • Kang, Yijin; Ye, Xingchen; Chen, Jun
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja310427u

Reconfigurable Printed Liquids
journal, March 2018


Quasicrystalline nanocrystal superlattice with partial matching rules
journal, September 2016

  • Ye, Xingchen; Chen, Jun; Eric Irrgang, M.
  • Nature Materials, Vol. 16, Issue 2
  • DOI: 10.1038/nmat4759

Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films
journal, January 2007

  • Urban, Jeffrey J.; Talapin, Dmitri V.; Shevchenko, Elena V.
  • Nature Materials, Vol. 6, Issue 2, p. 115-121
  • DOI: 10.1038/nmat1826

Properties of Fatty Amine–Silica Nanoparticle Interfacial Layers at the Hexane–Water Interface
journal, January 2012

  • Whitby, Catherine P.; Fornasiero, Daniel; Ralston, John
  • The Journal of Physical Chemistry C, Vol. 116, Issue 4
  • DOI: 10.1021/jp210870v

Nanocomposite Architecture for Rapid, Spectrally-Selective Electrochromic Modulation of Solar Transmittance
journal, July 2015


Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots
journal, June 2003

  • Redl, F. X.; Cho, K.-S.; Murray, C. B.
  • Nature, Vol. 423, Issue 6943, p. 968-971
  • DOI: 10.1038/nature01702

Active structuring of colloidal armour on liquid drops
journal, June 2013

  • Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3066

Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials
journal, August 2016


Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface
journal, July 2010

  • Dong, Angang; Chen, Jun; Vora, Patrick M.
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09188

Binary and Ternary Superlattices Self-Assembled from Colloidal Nanodisks and Nanorods
journal, May 2015

  • Paik, Taejong; Diroll, Benjamin T.; Kagan, Cherie R.
  • Journal of the American Chemical Society, Vol. 137, Issue 20
  • DOI: 10.1021/jacs.5b03234

Nearest-neighbour nanocrystal bonding dictates framework stability or collapse in colloidal nanocrystal frameworks
journal, January 2017

  • Williams, Teresa E.; Ushizima, Daniela; Zhu, Chenhui
  • Chemical Communications, Vol. 53, Issue 35
  • DOI: 10.1039/C6CC10183F