DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Discontinuous Phase Transitions in Nonlocal Schloegl Models for Autocatalysis: Loss and Reemergence of a Nonequilibrium Gibbs Phase Rule

Abstract

Here, we consider Schloegl models (or contact processes) where particles on a square grid annihilate at a rate p and are created at a rate of kn=n(n–1)/[N(N–1)] at empty sites with n particles in a neighborhood ΩN of size N. Simulation reveals a discontinuous transition between populated and vacuum states, but equistable p=peq determined by the stationarity of planar interfaces between these states depends on the interface orientation and on ΩN of size N. The behavior for large ΩN of size N follows from continuum equations. These also depend on the interface orientation and on ΩN of size N shape, but a unique peq=0.211 376 320 4 emerges imposing a Gibbs phase rule.

Authors:
 [1];  [2];  [1]
  1. Ames Lab. and Iowa State Univ., Ames, IA (United States)
  2. National Chung Cheng Univ., Chiayi (Taiwan)
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1477196
Alternate Identifier(s):
OSTI ID: 1471788
Report Number(s):
IS-J-9772
Journal ID: ISSN 0031-9007; PRLTAO
Grant/Contract Number:  
AC02-07CH11358; 105-2115-M-194-011-MY2
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 121; Journal Issue: 12; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Liu, Da -Jiang, Wang, Chi -Jen, and Evans, James W. Discontinuous Phase Transitions in Nonlocal Schloegl Models for Autocatalysis: Loss and Reemergence of a Nonequilibrium Gibbs Phase Rule. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.121.120603.
Liu, Da -Jiang, Wang, Chi -Jen, & Evans, James W. Discontinuous Phase Transitions in Nonlocal Schloegl Models for Autocatalysis: Loss and Reemergence of a Nonequilibrium Gibbs Phase Rule. United States. https://doi.org/10.1103/PhysRevLett.121.120603
Liu, Da -Jiang, Wang, Chi -Jen, and Evans, James W. Fri . "Discontinuous Phase Transitions in Nonlocal Schloegl Models for Autocatalysis: Loss and Reemergence of a Nonequilibrium Gibbs Phase Rule". United States. https://doi.org/10.1103/PhysRevLett.121.120603. https://www.osti.gov/servlets/purl/1477196.
@article{osti_1477196,
title = {Discontinuous Phase Transitions in Nonlocal Schloegl Models for Autocatalysis: Loss and Reemergence of a Nonequilibrium Gibbs Phase Rule},
author = {Liu, Da -Jiang and Wang, Chi -Jen and Evans, James W.},
abstractNote = {Here, we consider Schloegl models (or contact processes) where particles on a square grid annihilate at a rate p and are created at a rate of kn=n(n–1)/[N(N–1)] at empty sites with n particles in a neighborhood ΩN of size N. Simulation reveals a discontinuous transition between populated and vacuum states, but equistable p=peq determined by the stationarity of planar interfaces between these states depends on the interface orientation and on ΩN of size N. The behavior for large ΩN of size N follows from continuum equations. These also depend on the interface orientation and on ΩN of size N shape, but a unique peq=0.211 376 320 4 emerges imposing a Gibbs phase rule.},
doi = {10.1103/PhysRevLett.121.120603},
journal = {Physical Review Letters},
number = 12,
volume = 121,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Steady-state C versus $p$ for square $Ω$N for $N$=$L$2-1 with L ≥ 3, and for $N$=4 from KMC; $C$=0 above the transition. MF behavior is also shown. Inset: $S$=1 strip geometries for $N$=4,128.

Save / Share:

Works referenced in this record:

A first order phase transition in the threshold <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>θ</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> contact process on random <mml:math altimg="si2.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>r</mml:mi></mml:math>-regular graphs and <mml:math altimg="si3.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>r</mml:mi></mml:math>-trees
journal, February 2013

  • Chatterjee, Shirshendu; Durrett, Rick
  • Stochastic Processes and their Applications, Vol. 123, Issue 2
  • DOI: 10.1016/j.spa.2012.10.001

Mean-Field Driven First-Order Phase Transitions in Systems with Long-Range Interactions
journal, March 2006

  • Biskup, Marek; Chayes, Lincoln; Crawford, Nicholas
  • Journal of Statistical Physics, Vol. 122, Issue 6
  • DOI: 10.1007/s10955-005-8072-0

Threshold θ ≥ 2 contact processes on homogeneous trees
journal, July 2007

  • Fontes, Luiz Renato; Schonmann, Roberto H.
  • Probability Theory and Related Fields, Vol. 141, Issue 3-4
  • DOI: 10.1007/s00440-007-0092-z

Generic nonergodic behavior in locally interacting continuous systems
journal, September 1990


Reactive lattice gas automata
journal, January 1991


From atomistic lattice-gas models for surface reactions to hydrodynamic reaction-diffusion equations
journal, March 2002

  • Evans, J. W.; Liu, Da-Jiang; Tammaro, M.
  • Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 12, Issue 1
  • DOI: 10.1063/1.1450566

Generic two-phase coexistence in nonequilibrium systems
journal, January 2005

  • Mu�oz, M. A.; de los Santos, F.; Telo da Gama, M. M.
  • The European Physical Journal B, Vol. 43, Issue 1
  • DOI: 10.1140/epjb/e2005-00029-3

Fluctuations and Universality in a Catalysis Model with Long-range Reactivity
journal, January 2015


Propagating waves in one-dimensional discrete networks of coupled units
journal, March 2004


Universality classes in nonequilibrium lattice systems
journal, August 2004


Two versions of the threshold contact model in two dimensions
journal, September 2012

  • da Silva, Evandro F.; de Oliveira, Mário J.
  • Computer Physics Communications, Vol. 183, Issue 9
  • DOI: 10.1016/j.cpc.2012.05.003

Medium-range interactions and crossover to classical critical behavior
journal, November 1996


Critical discontinuous phase transition in the threshold contact process
journal, March 2011

  • da Silva, Evandro F.; de Oliveira, Mário J.
  • Journal of Physics A: Mathematical and Theoretical, Vol. 44, Issue 13
  • DOI: 10.1088/1751-8113/44/13/135002

Nonequilibrium Model for the Contact Process in an Ensemble of Constant Particle Number
journal, June 2001


Quadratic Contact Process: Phase Separation with Interface-Orientation-Dependent Equistability
journal, February 2007


A Classification of Spikes and Plateaus
journal, January 2007


Kinetic Phase Transitions in an Irreversible Surface-Reaction Model
journal, June 1986


Dynamics of Lattice Differential Equations
journal, September 1996

  • Chow, Shui-Nee; Mallet-Paret, John; Van Vleck, Erik S.
  • International Journal of Bifurcation and Chaos, Vol. 06, Issue 09
  • DOI: 10.1142/S0218127496000977

Chemical reaction models for non-equilibrium phase transitions
journal, April 1972


Investigation of the first-order phase transition in the A - B 2 reaction model using a constant-coverage kinetic ensemble
journal, October 1992


Stochastic Spatial Models
journal, January 1999


Schloegl's second model for autocatalysis on hypercubic lattices: Dimension dependence of generic two-phase coexistence
journal, April 2012


Metastability, nucleation, and noise-enhanced stabilization out of equilibrium
journal, November 2006


On phase transitions in Schl�gl's second model
journal, December 1982

  • Grassberger, P.
  • Zeitschrift f�r Physik B Condensed Matter, Vol. 47, Issue 4
  • DOI: 10.1007/BF01313803

The survival of large dimensional threshold contact processes
journal, July 2009

  • Mountford, Thomas; Schonmann, Roberto H.
  • The Annals of Probability, Vol. 37, Issue 4
  • DOI: 10.1214/08-AOP440

Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability
journal, April 2015

  • Wang, Chi-Jen; Liu, Da-Jiang; Evans, James W.
  • The Journal of Chemical Physics, Vol. 142, Issue 16
  • DOI: 10.1063/1.4918908

Non-equilibrium critical phenomena and phase transitions into absorbing states
journal, November 2000


Role of Irreversibility in Stabilizing Complex and Nonergodic Behavior in Locally Interacting Discrete Systems
journal, August 1985


Schloegl’s second model for autocatalysis with particle diffusion: Lattice-gas realization exhibiting generic two-phase coexistence
journal, February 2009

  • Guo, Xiaofang; Liu, Da-Jiang; Evans, J. W.
  • The Journal of Chemical Physics, Vol. 130, Issue 7
  • DOI: 10.1063/1.3074308

Generic two-phase coexistence, relaxation kinetics, and interface propagation in the quadratic contact process: Analytic studies
journal, January 2008

  • Guo, Xiaofang; Evans, J. W.; Liu, Da-Jiang
  • Physica A: Statistical Mechanics and its Applications, Vol. 387, Issue 1
  • DOI: 10.1016/j.physa.2007.09.002

A sharper threshold for bootstrap percolation in two dimensions
journal, December 2010

  • Gravner, Janko; Holroyd, Alexander E.; Morris, Robert
  • Probability Theory and Related Fields, Vol. 153, Issue 1-2
  • DOI: 10.1007/s00440-010-0338-z

Propagation and Its Failure in Coupled Systems of Discrete Excitable Cells
journal, June 1987

  • Keener, James P.
  • SIAM Journal on Applied Mathematics, Vol. 47, Issue 3
  • DOI: 10.1137/0147038

Metastability effects in bootstrap percolation
journal, October 1988


Nonequilibrium Model for the Contact Process in an Ensemble of Constant Particle Number
text, January 2001


The survival of large dimensional threshold contact processes
text, January 2009


Generic two-phase coexistence in nonequilibrium systems
text, January 2004


Metastability, nucleation, and noise-enhanced stabilization out of equilibrium
text, January 2006


Medium-range interactions and crossover to classical critical behavior
text, January 1996


Works referencing / citing this record:

Entropic long-range ordering in an adsorption-desorption model
journal, June 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.