skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Acoustic waveguiding in a silicon carbide phononic crystals at microwave frequencies

Abstract

Two dimensional SiC–air phononic crystals have been modeled, fabricated, and tested with a measured bandgap ranging from 665 to 693 MHz. Snowflake air inclusions on a hexagonal lattice were used for the phononic crystal. By manipulating the phononic crystal lattice and inserting circular inclusions, a waveguide was created at 680 MHz. The combined insertion loss and propagation loss for the waveguide is 8.2 dB, i.e., 39% of the energy is guided due to the high level of the confinement afforded by the phononic crystal. In conclusion, the SiC–air phononic crystals and waveguides were fabricated using a CMOS-compatible process, which allows for seamless integration of these devices into wireless communication systems operating at microwave frequencies.

Authors:
ORCiD logo [1];  [2];  [2];  [2];  [3]
  1. Univ. of Jamestown, Jamestown, ND (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  3. Kansas State Univ., Manhattan, KS (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1476935
Report Number(s):
SAND-2018-10596J
Journal ID: ISSN 0003-6951; 668175
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 112; Journal Issue: 10; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Baboly, M. Ghasemi, Reinke, Charles M., Griffin, Benjamin A., El-Kady, Ihab F., and Leseman, Z. C. Acoustic waveguiding in a silicon carbide phononic crystals at microwave frequencies. United States: N. p., 2018. Web. doi:10.1063/1.5016380.
Baboly, M. Ghasemi, Reinke, Charles M., Griffin, Benjamin A., El-Kady, Ihab F., & Leseman, Z. C. Acoustic waveguiding in a silicon carbide phononic crystals at microwave frequencies. United States. doi:10.1063/1.5016380.
Baboly, M. Ghasemi, Reinke, Charles M., Griffin, Benjamin A., El-Kady, Ihab F., and Leseman, Z. C. Mon . "Acoustic waveguiding in a silicon carbide phononic crystals at microwave frequencies". United States. doi:10.1063/1.5016380. https://www.osti.gov/servlets/purl/1476935.
@article{osti_1476935,
title = {Acoustic waveguiding in a silicon carbide phononic crystals at microwave frequencies},
author = {Baboly, M. Ghasemi and Reinke, Charles M. and Griffin, Benjamin A. and El-Kady, Ihab F. and Leseman, Z. C.},
abstractNote = {Two dimensional SiC–air phononic crystals have been modeled, fabricated, and tested with a measured bandgap ranging from 665 to 693 MHz. Snowflake air inclusions on a hexagonal lattice were used for the phononic crystal. By manipulating the phononic crystal lattice and inserting circular inclusions, a waveguide was created at 680 MHz. The combined insertion loss and propagation loss for the waveguide is 8.2 dB, i.e., 39% of the energy is guided due to the high level of the confinement afforded by the phononic crystal. In conclusion, the SiC–air phononic crystals and waveguides were fabricated using a CMOS-compatible process, which allows for seamless integration of these devices into wireless communication systems operating at microwave frequencies.},
doi = {10.1063/1.5016380},
journal = {Applied Physics Letters},
number = 10,
volume = 112,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Finite element analysis of the band structure for an infinite 2D hexagonal array of snowflake in usions in a SiC-air phononic crystal with a=7.2 μm, r=3.2 μm, w=2 μm, and d=1 μm thick. A unit cell of the structure is shown in the inset.

Save / Share:

Works referenced in this record:

Demonstration of acoustic waveguiding and tight bending in phononic crystals
journal, October 2016

  • Ghasemi Baboly, M.; Raza, A.; Brady, J.
  • Applied Physics Letters, Vol. 109, Issue 18
  • DOI: 10.1063/1.4966463

Acoustic beamwidth compressor using gradient-index phononic crystals
journal, August 2009

  • Lin, Sz-Chin Steven; Tittmann, Bernhard R.; Sun, Jia-Hong
  • Journal of Physics D: Applied Physics, Vol. 42, Issue 18
  • DOI: 10.1088/0022-3727/42/18/185502

Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
journal, May 2014

  • Hussein, Mahmoud I.; Leamy, Michael J.; Ruzzene, Massimo
  • Applied Mechanics Reviews, Vol. 66, Issue 4
  • DOI: 10.1115/1.4026911

Phonon-based scalable platform for chip-scale quantum computing
journal, December 2016

  • Reinke, Charles M.; El-Kady, Ihab
  • AIP Advances, Vol. 6, Issue 12
  • DOI: 10.1063/1.4972568

Guiding and bending of acoustic waves in highly confined phononic crystal waveguides
journal, May 2004

  • Khelif, A.; Choujaa, A.; Benchabane, S.
  • Applied Physics Letters, Vol. 84, Issue 22
  • DOI: 10.1063/1.1757642

A picogram- and nanometre-scale photonic-crystal optomechanical cavity
journal, May 2009

  • Eichenfield, Matt; Camacho, Ryan; Chan, Jasper
  • Nature, Vol. 459, Issue 7246, p. 550-555
  • DOI: 10.1038/nature08061

Realizing the frequency quality factor product limit in silicon via compact phononic crystal resonators
journal, October 2010

  • Goettler, Drew; Su, Mehmet; Leseman, Zayd
  • Journal of Applied Physics, Vol. 108, Issue 8
  • DOI: 10.1063/1.3475987

The effect of stiffness and mass on coupled oscillations in a phononic crystal
journal, November 2013

  • Baboly, M. Ghasemi; Su, M. F.; Reinke, C. M.
  • AIP Advances, Vol. 3, Issue 11
  • DOI: 10.1063/1.4834335

Compact bends for multi-mode photonic crystal waveguides with high transmission and suppressed modal crosstalk
journal, January 2013


Multi-objective optimization of two-dimensional porous phononic crystals
journal, March 2014


Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab
journal, January 2010

  • Safavi-Naeini, Amir H.; Painter, Oskar
  • Optics Express, Vol. 18, Issue 14
  • DOI: 10.1364/OE.18.014926

Acoustic band structure of periodic elastic composites
journal, September 1993


Two-dimensional phononic crystal with tunable narrow pass band: Application to a waveguide with selective frequency
journal, August 2003

  • Khelif, A.; Deymier, P. A.; Djafari-Rouhani, B.
  • Journal of Applied Physics, Vol. 94, Issue 3
  • DOI: 10.1063/1.1557776

Enhanced plane wave expansion analysis for the band structure of bulk modes in two-dimensional high-contrast solid–solid phononic crystals
journal, November 2014

  • Baboly, Mohammadhosein Ghasemi; Soliman, Yasser; Su, Mehmet F.
  • Photonics and Nanostructures - Fundamentals and Applications, Vol. 12, Issue 5
  • DOI: 10.1016/j.photonics.2014.08.001

Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature
journal, June 2015

  • Alaie, Seyedhamidreza; Goettler, Drew F.; Su, Mehmet
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8228

Multiple wide complete bandgaps of two-dimensional phononic crystal slabs with cross-like holes
journal, April 2013


Reducing symmetry in topology optimization of two-dimensional porous phononic crystals
journal, November 2015

  • Dong, Hao-Wen; Wang, Yue-Sheng; Wang, Yan-Feng
  • AIP Advances, Vol. 5, Issue 11
  • DOI: 10.1063/1.4936640

Pulsed vacuum and etching systems: Theoretical design considerations for a pulsed vacuum system and its application to XeF2 etching of Si
journal, November 2014


Microfabricated VHF acoustic crystals and waveguides
journal, July 2008

  • Olsson, Roy H.; El-Kady, Ihab F.; Su, Mehmet F.
  • Sensors and Actuators A: Physical, Vol. 145-146
  • DOI: 10.1016/j.sna.2007.10.081

Focusing guided waves using surface bonded elastic metamaterials
journal, September 2013

  • Yan, Xiang; Zhu, Rui; Huang, Guoliang
  • Applied Physics Letters, Vol. 103, Issue 12
  • DOI: 10.1063/1.4821258

Phononic crystals operating in the gigahertz range with extremely wide band gaps
journal, November 2010

  • Soliman, Y. M.; Su, M. F.; Leseman, Z. C.
  • Applied Physics Letters, Vol. 97, Issue 19
  • DOI: 10.1063/1.3504701

Simultaneous high-Q confinement and selective direct piezoelectric excitation of flexural and extensional lateral vibrations in a silicon phononic crystal slab resonator
journal, June 2011

  • Mohammadi, Saeed; Eftekhar, Ali. A.; Pourabolghasem, Reza
  • Sensors and Actuators A: Physical, Vol. 167, Issue 2
  • DOI: 10.1016/j.sna.2011.03.014

Large bandgaps of two-dimensional phononic crystals with cross-like holes
journal, December 2011

  • Wang, Yan-Feng; Wang, Yue-Sheng; Su, Xiao-Xing
  • Journal of Applied Physics, Vol. 110, Issue 11
  • DOI: 10.1063/1.3665205

Complete band gaps and deaf bands of triangular and honeycomb water-steel phononic crystals
journal, February 2007

  • Hsiao, Fu-Li; Khelif, Abdelkrim; Moubchir, Hanane
  • Journal of Applied Physics, Vol. 101, Issue 4
  • DOI: 10.1063/1.2472650

Control of coherent information via on-chip photonic–phononic emitter–receivers
journal, March 2015

  • Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7427

Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates
journal, June 2008

  • Mohammadi, Saeed; Eftekhar, Ali Asghar; Khelif, Abdelkrim
  • Applied Physics Letters, Vol. 92, Issue 22
  • DOI: 10.1063/1.2939097

Acousto-Optic Modulation and Optoacoustic Gating in Piezo-Optomechanical Circuits
journal, February 2017


Ultra-high frequency, high Q/volume micromechanical resonators in a planar AlN phononic crystal
journal, July 2016

  • Ghasemi Baboly, M.; Alaie, S.; Reinke, C. M.
  • Journal of Applied Physics, Vol. 120, Issue 3
  • DOI: 10.1063/1.4958671

Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate
journal, April 2011

  • Wu, Tsung-Tsong; Chen, Yan-Ting; Sun, Jia-Hong
  • Applied Physics Letters, Vol. 98, Issue 17
  • DOI: 10.1063/1.3583660

Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators
journal, November 2013

  • Ghaffari, Shirin; Chandorkar, Saurabh A.; Wang, Shasha
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03244

Enhancing Mechanical Quality Factors of Micro-Toroidal Optomechanical Resonators Using Phononic Crystals
journal, April 2016

  • Alaie, Seyedhamidreza; Hossein-Zadeh, Mani; Ghasemi Baboly, Mohammadhosein
  • Journal of Microelectromechanical Systems, Vol. 25, Issue 2
  • DOI: 10.1109/JMEMS.2015.2504332

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.