skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct-to-indirect electronic state transition in dynamically compressed GaAs quantum wells

Abstract

Dynamic compression of GaAs quantum wells was achieved to examine the direct-to-indirect transition in a reduced dimension semiconductor structure under uniaxial strain conditions. Our results show that the transformation deviates significantly from the electronic structure predictions using bulk deformation potentials. Finally, this finding is attributed to the suppression of real-space type-II transitions by quantum state interactions due to the presence of large anisotropic strains.

Authors:
 [1];  [2]; ORCiD logo [1]
  1. Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics. Dept. of Physics
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
Washington State Univ., Pullman, WA (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP) (NA-10); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
OSTI Identifier:
1476912
Alternate Identifier(s):
OSTI ID: 1464316; OSTI ID: 1468524; OSTI ID: 1476907; OSTI ID: 1512622
Report Number(s):
NREL/JA-5J00-71420; LLNL-JRNL-744179
Journal ID: ISSN 0003-6951
Grant/Contract Number:  
NA0000970; AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 113; Journal Issue: 7; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; photoluminescence spectroscopy; electronic bandstructure; quantum wells; electronic structure; gallium arsenide; III-V semiconductors; quantum theory; semiconducting gallium; semiconducting gallium arsenide; strain

Citation Formats

Grivickas, P., Geisz, J. F., and Gupta, Y. M. Direct-to-indirect electronic state transition in dynamically compressed GaAs quantum wells. United States: N. p., 2018. Web. doi:10.1063/1.5038723.
Grivickas, P., Geisz, J. F., & Gupta, Y. M. Direct-to-indirect electronic state transition in dynamically compressed GaAs quantum wells. United States. doi:10.1063/1.5038723.
Grivickas, P., Geisz, J. F., and Gupta, Y. M. Mon . "Direct-to-indirect electronic state transition in dynamically compressed GaAs quantum wells". United States. doi:10.1063/1.5038723. https://www.osti.gov/servlets/purl/1476912.
@article{osti_1476912,
title = {Direct-to-indirect electronic state transition in dynamically compressed GaAs quantum wells},
author = {Grivickas, P. and Geisz, J. F. and Gupta, Y. M.},
abstractNote = {Dynamic compression of GaAs quantum wells was achieved to examine the direct-to-indirect transition in a reduced dimension semiconductor structure under uniaxial strain conditions. Our results show that the transformation deviates significantly from the electronic structure predictions using bulk deformation potentials. Finally, this finding is attributed to the suppression of real-space type-II transitions by quantum state interactions due to the presence of large anisotropic strains.},
doi = {10.1063/1.5038723},
journal = {Applied Physics Letters},
number = 7,
volume = 113,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Use of dynamic compression to probe semiconductor response at large strains
journal, April 2013

  • Grivickas, P.; McCluskey, M. D.; Gupta, Y. M.
  • physica status solidi (b), Vol. 250, Issue 4
  • DOI: 10.1002/pssb.201200959

Real-time band structure changes of GaAs during continuous dynamic compression to 5 GPa
journal, October 2009

  • Grivickas, P.; McCluskey, M. D.; Gupta, Y. M.
  • Applied Physics Letters, Vol. 95, Issue 15
  • DOI: 10.1063/1.3247886

Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain
journal, December 2008

  • Smith, Andrew M.; Mohs, Aaron M.; Nie, Shuming
  • Nature Nanotechnology, Vol. 4, Issue 1
  • DOI: 10.1038/nnano.2008.360

Effect of Pressure on the Absorption Edges of Some III-V, II-VI, and I-VII Compounds
journal, May 1961


Laser interferometer for measuring high velocities of any reflecting surface
journal, November 1972

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 43, Issue 11
  • DOI: 10.1063/1.1660986

Effects of compressive uniaxial stress on the electronic structure of GaAs- Ga 1 x Al x As quantum wells
journal, August 1987


Mixing of valence subbands in GaAs/ Al x Ga 1 x As multiple quantum wells by uniaxial stress
journal, March 1988


Million-Atom Pseudopotential Calculation of γ - X Mixing in GaAs / AlAs Superlattices and Quantum Dots
journal, April 1997


Temperature dependence of exciton lifetimes in GaAs/ Al x Ga 1 x As single quantum wells
journal, April 1993


On the Farsightedness (hyperopia) of the Standard k � p Model
journal, April 2002


Transformation of GaAs into an indirect L -band-gap semiconductor under uniaxial strain
journal, August 2009


Band-gap luminescence of GaP:S shock compressed to 5GPa
journal, April 2008

  • Grivickas, P.; McCluskey, M. D.; Gupta, Y. M.
  • Applied Physics Letters, Vol. 92, Issue 14
  • DOI: 10.1063/1.2907499

Band parameters for III–V compound semiconductors and their alloys
journal, June 2001

  • Vurgaftman, I.; Meyer, J. R.; Ram-Mohan, L. R.
  • Journal of Applied Physics, Vol. 89, Issue 11, p. 5815-5875
  • DOI: 10.1063/1.1368156

Equilibrium limits of coherency in strained nanowire heterostructures
journal, June 2005

  • Ertekin, Elif; Greaney, P. A.; Chrzan, D. C.
  • Journal of Applied Physics, Vol. 97, Issue 11
  • DOI: 10.1063/1.1903106

Effects of linear and nonlinear piezoelectricity on the electronic properties of In As Ga As quantum dots
journal, August 2006


Correction to the velocity‐per‐fringe relationship for the VISAR interferometer
journal, August 1974

  • Barker, L. M.; Schuler, K. W.
  • Journal of Applied Physics, Vol. 45, Issue 8
  • DOI: 10.1063/1.1663841

Γ- X mixing in GaAs/ Al x Ga 1 x As coupled double quantum wells under hydrostatic pressure
journal, January 1993


High-pressure studies of GaAs- Al x Ga 1 x As quantum wells at 300 and 80 K using photoreflectance spectroscopy
journal, November 1988

  • Kangarlu, A.; Chandrasekhar, H. R.; Chandrasekhar, M.
  • Physical Review B, Vol. 38, Issue 14
  • DOI: 10.1103/PhysRevB.38.9790

Strain-Induced Band Gap Modification in Coherent Core/Shell Nanostructures
journal, August 2010

  • Yang, Shenyuan; Prendergast, David; Neaton, Jeffrey B.
  • Nano Letters, Vol. 10, Issue 8
  • DOI: 10.1021/nl101999p

Uniaxial stress dependence of spatially confined excitons
journal, November 1986


Free‐standing versus AlAs‐embedded GaAs quantum dots, wires, and films: The emergence of a zero‐confinement state
journal, June 1996

  • Franceschetti, Alberto; Zunger, Alex
  • Applied Physics Letters, Vol. 68, Issue 24
  • DOI: 10.1063/1.115791

High-pressure studies of GaAs- Ga 1 x Al x As quantum wells of widths 26 to 150 A ̊
journal, June 1986

  • Venkateswaran, Umadevi; Chandrasekhar, Meera; Chandrasekhar, H. R.
  • Physical Review B, Vol. 33, Issue 12
  • DOI: 10.1103/PhysRevB.33.8416

Quantum-confinement-induced Γ→ X transition in GaAs/AlGaAs quantum films, wires, and dots
journal, November 1995


Quantum-size-induced electronic transitions in quantum dots: Indirect band-gap GaAs
journal, July 2008


Optics of multiple quantum wells uniaxially stressed along the growth axis
journal, May 1996


Semiconductors under Uniaxial Strain
journal, November 1996


Effect of hydrostatic pressure on GaAs- Ga 1 x Al x As microstructures
journal, April 1987


Reflectance spectroscopy on GaAs- Ga 0.5 Al 0.5 As single quantum wells under in-plane uniaxial stress at liquid-helium temperature
journal, July 1988


Quantum-Size Effects on the Pressure-Induced Direct-to-Indirect Band-Gap Transition in InP Quantum Dots
journal, June 1998