skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrodynamic instabilities seeded by the X-ray shadow of ICF capsule fill-tubes [X-ray shadow imprint of hydrodynamic instabilities seeded by the fill-tube]

Abstract

During the first few hundred picoseconds of indirect drive for inertial confinement fusion on the National Ignition Facility, x-ray spots formed on the hohlraum wall when the drive beams cast shadows of the fuel fill-tube on the capsule surface. Differential ablation at the shadow boundaries seeds perturbations which are hydrodynamically unstable under subsequent acceleration and can grow to impact capsule performance. Furthermore, we have characterized this shadow imprint mechanism and demonstrated two techniques to mitigate against it using (i) a reduced diameter fuel fill-tube, and (ii) a pre-pulse to blow down the fill-tube before the shadow forming x-ray spots from the main outer drive beams develop.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1];  [2];  [1]; ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [2];  [1];  [1];  [1];  [2];  [1] more »; ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [2];  [1]; ORCiD logo [1];  [3] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. General Atomics, San Diego, CA (United States)
  3. Diamond Materials GmbH, Freiburg (Germany)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1476853
Alternate Identifier(s):
OSTI ID: 1462576
Report Number(s):
LLNL-JRNL-750326
Journal ID: ISSN 1070-664X; 935119
Grant/Contract Number:  
AC52-07NA27344; NA0001808
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 8; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

MacPhee, A. G., Smalyuk, V. A., Landen, O. L., Weber, C. R., Robey, H. F., Alfonso, E. L., Baker, K. L., Berzak Hopkins, L. F., Biener, J., Bunn, T., Casey, D. T., Clark, D. S., Crippen, J. W., Divol, L., Farrell, M., Felker, S., Field, J. E., Hsing, W. W., Kong, C., Le Pape, S., Martinez, D. A., Michel, P., Milovich, J., Moore, A., Nikroo, A., Pickworth, L., Rice, N., Stadermann, M., Yeamans, C., and Wild, C. Hydrodynamic instabilities seeded by the X-ray shadow of ICF capsule fill-tubes [X-ray shadow imprint of hydrodynamic instabilities seeded by the fill-tube]. United States: N. p., 2018. Web. doi:10.1063/1.5037816.
MacPhee, A. G., Smalyuk, V. A., Landen, O. L., Weber, C. R., Robey, H. F., Alfonso, E. L., Baker, K. L., Berzak Hopkins, L. F., Biener, J., Bunn, T., Casey, D. T., Clark, D. S., Crippen, J. W., Divol, L., Farrell, M., Felker, S., Field, J. E., Hsing, W. W., Kong, C., Le Pape, S., Martinez, D. A., Michel, P., Milovich, J., Moore, A., Nikroo, A., Pickworth, L., Rice, N., Stadermann, M., Yeamans, C., & Wild, C. Hydrodynamic instabilities seeded by the X-ray shadow of ICF capsule fill-tubes [X-ray shadow imprint of hydrodynamic instabilities seeded by the fill-tube]. United States. doi:10.1063/1.5037816.
MacPhee, A. G., Smalyuk, V. A., Landen, O. L., Weber, C. R., Robey, H. F., Alfonso, E. L., Baker, K. L., Berzak Hopkins, L. F., Biener, J., Bunn, T., Casey, D. T., Clark, D. S., Crippen, J. W., Divol, L., Farrell, M., Felker, S., Field, J. E., Hsing, W. W., Kong, C., Le Pape, S., Martinez, D. A., Michel, P., Milovich, J., Moore, A., Nikroo, A., Pickworth, L., Rice, N., Stadermann, M., Yeamans, C., and Wild, C. Thu . "Hydrodynamic instabilities seeded by the X-ray shadow of ICF capsule fill-tubes [X-ray shadow imprint of hydrodynamic instabilities seeded by the fill-tube]". United States. doi:10.1063/1.5037816. https://www.osti.gov/servlets/purl/1476853.
@article{osti_1476853,
title = {Hydrodynamic instabilities seeded by the X-ray shadow of ICF capsule fill-tubes [X-ray shadow imprint of hydrodynamic instabilities seeded by the fill-tube]},
author = {MacPhee, A. G. and Smalyuk, V. A. and Landen, O. L. and Weber, C. R. and Robey, H. F. and Alfonso, E. L. and Baker, K. L. and Berzak Hopkins, L. F. and Biener, J. and Bunn, T. and Casey, D. T. and Clark, D. S. and Crippen, J. W. and Divol, L. and Farrell, M. and Felker, S. and Field, J. E. and Hsing, W. W. and Kong, C. and Le Pape, S. and Martinez, D. A. and Michel, P. and Milovich, J. and Moore, A. and Nikroo, A. and Pickworth, L. and Rice, N. and Stadermann, M. and Yeamans, C. and Wild, C.},
abstractNote = {During the first few hundred picoseconds of indirect drive for inertial confinement fusion on the National Ignition Facility, x-ray spots formed on the hohlraum wall when the drive beams cast shadows of the fuel fill-tube on the capsule surface. Differential ablation at the shadow boundaries seeds perturbations which are hydrodynamically unstable under subsequent acceleration and can grow to impact capsule performance. Furthermore, we have characterized this shadow imprint mechanism and demonstrated two techniques to mitigate against it using (i) a reduced diameter fuel fill-tube, and (ii) a pre-pulse to blow down the fill-tube before the shadow forming x-ray spots from the main outer drive beams develop.},
doi = {10.1063/1.5037816},
journal = {Physics of Plasmas},
number = 8,
volume = 25,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Suppression of Laser Nonuniformity Imprinting Using a Thin High- Z Coating
journal, February 2015


First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility
journal, August 2015

  • Smalyuk, V. A.; Robey, H. F.; Döppner, T.
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4929912

First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, August 2016


Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive
journal, August 2015

  • MacPhee, A. G.; Peterson, J. L.; Casey, D. T.
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4928909

Mitigation of X-ray shadow seeding of hydrodynamic instabilities on inertial confinement fusion capsules using a reduced diameter fuel fill-tube
journal, May 2018

  • MacPhee, A. G.; Smalyuk, V. A.; Landen, O. L.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5025183

Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions
journal, August 2013


Grand challenges of inertial fusion energy
journal, August 2010


Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping
journal, May 2016

  • Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4944821

Acceleration and deceleration model of indirect drive ICF capsules
journal, November 2006


Reduced instability growth with high-adiabat high-foot implosions at the National Ignition Facility
journal, July 2014


Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

The near vacuum hohlraum campaign at the NIF: A new approach
journal, May 2016

  • Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4950843

Experimental reduction of laser imprinting and Rayleigh–Taylor growth in spherically compressed, medium-Z-doped plastic targets
journal, June 2012

  • Fiksel, G.; Hu, S. X.; Goncharov, V. A.
  • Physics of Plasmas, Vol. 19, Issue 6
  • DOI: 10.1063/1.4729732

Direct Observation of Mass Oscillations Due to Ablative Richtmyer-Meshkov Instability in Plastic Targets
journal, December 2001


High-gain direct-drive target design for laser fusion
journal, June 2000

  • Bodner, S. E.; Colombant, D. G.; Schmitt, A. J.
  • Physics of Plasmas, Vol. 7, Issue 6
  • DOI: 10.1063/1.874063

The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion
journal, March 2015

  • Weber, C. R.; Clark, D. S.; Cook, A. W.
  • Physics of Plasmas, Vol. 22, Issue 3
  • DOI: 10.1063/1.4914157

The effects of target mounts in direct-drive implosions on OMEGA
journal, August 2009

  • Igumenshchev, I. V.; Marshall, F. J.; Marozas, J. A.
  • Physics of Plasmas, Vol. 16, Issue 8
  • DOI: 10.1063/1.3195065

Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket
journal, May 2003

  • Goncharov, V. N.; Knauer, J. P.; McKenty, P. W.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1562166

Implosion dynamics measurements at the National Ignition Facility
journal, December 2012

  • Hicks, D. G.; Meezan, N. B.; Dewald, E. L.
  • Physics of Plasmas, Vol. 19, Issue 12
  • DOI: 10.1063/1.4769268

Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators
journal, March 2018

  • Clark, D. S.; Kritcher, A. L.; Yi, S. A.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5016874

Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity
journal, May 2017

  • Divol, L.; Pak, A.; Berzak Hopkins, L. F.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982215

Indirect-drive ablative Richtmyer Meshkov node scaling
journal, May 2016


Hot-Spot Mix in Ignition-Scale Inertial Confinement Fusion Targets
journal, July 2013


Measurement of Hydrodynamic Growth near Peak Velocity in an Inertial Confinement Fusion Capsule Implosion using a Self-Radiography Technique
journal, July 2016


Capsule implosion optimization during the indirect-drive National Ignition Campaign
journal, May 2011

  • Landen, O. L.; Edwards, J.; Haan, S. W.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592170

X-ray ablation rates in inertial confinement fusion capsule materials
journal, March 2011

  • Olson, R. E.; Rochau, G. A.; Landen, O. L.
  • Physics of Plasmas, Vol. 18, Issue 3
  • DOI: 10.1063/1.3566009

Improving ICF implosion performance with alternative capsule supports
journal, May 2017

  • Weber, C. R.; Casey, D. T.; Clark, D. S.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977536

Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility
journal, October 2017

  • Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.4995568

The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion
journal, May 2011

  • Edwards, M. J.; Lindl, J. D.; Spears, B. K.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592173

Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims
journal, July 2016

  • Clark, D. S.; Weber, C. R.; Smalyuk, V. A.
  • Physics of Plasmas, Vol. 23, Issue 7
  • DOI: 10.1063/1.4958812

Instability growth seeded by oxygen in CH shells on the National Ignition Facility
journal, March 2015

  • Haan, S. W.; Huang, H.; Johnson, M. A.
  • Physics of Plasmas, Vol. 22, Issue 3
  • DOI: 10.1063/1.4916300

Areal density evolution of isolated surface perturbations at the onset of x-ray ablation Richtmyer-Meshkov growth
journal, September 2011

  • Loomis, E. N.; Braun, D.; Batha, S. H.
  • Physics of Plasmas, Vol. 18, Issue 9
  • DOI: 10.1063/1.3632083

Coherence Theory Solution To The Pinhole Camera
journal, November 1966

  • Reynolds, George O.; Ward, John H.
  • Optical Engineering, Vol. 5, Issue 1
  • DOI: 10.1117/12.7971365

Performance of High-Convergence, Layered DT Implosions with Extended-Duration Pulses at the National Ignition Facility
journal, November 2013


Validating hydrodynamic growth in National Ignition Facility implosionsa)
journal, May 2015

  • Peterson, J. L.; Casey, D. T.; Hurricane, O. A.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920952

The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited)
journal, October 2010

  • Kline, J. L.; Widmann, K.; Warrick, A.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491032

Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums
journal, February 2011


Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

The National Ignition Facility
journal, December 2004


Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

Hydrodynamic instability experiments with three-dimensional modulations at the National Ignition Facility
journal, January 2015

  • Smalyuk, V. A.; Weber, S. V.; Casey, D. T.
  • High Power Laser Science and Engineering, Vol. 3
  • DOI: 10.1017/hpl.2015.12

Instability of the interface of two gases accelerated by a shock wave
journal, January 1972


Hydrodynamic instability growth and mix experiments at the National Ignition Facility
journal, May 2014

  • Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4872026

Taylor instability in shock acceleration of compressible fluids
journal, May 1960

  • Richtmyer, Robert D.
  • Communications on Pure and Applied Mathematics, Vol. 13, Issue 2
  • DOI: 10.1002/cpa.3160130207

Mitigating Laser Imprint in Direct-Drive Inertial Confinement Fusion Implosions with High- Z Dopants
journal, May 2012


Indirect drive ignition at the National Ignition Facility
journal, October 2016


Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
journal, November 1882


Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive
journal, September 2015


Theory of the Ablative Richtmyer-Meshkov Instability
journal, March 1999


Observations of multimode perturbation decay at non-accelerating, soft x-ray driven ablation fronts
journal, December 2012

  • Loomis, E. N.; Braun, D.; Batha, S. H.
  • Physics of Plasmas, Vol. 19, Issue 12
  • DOI: 10.1063/1.4771680

X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube
journal, March 2017