DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride

Abstract

Abstract The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high‐pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn 3 N 4 under compression is now reported. A continuous opening of the optical band gap was observed from 1.3 eV to 3.0 eV over a range of 100 GPa, a 540 nm blue‐shift spanning the entire visible spectrum. The pressure‐mediated band gap opening is general to this material across numerous high‐density polymorphs, implicating the predominant ionic bonding in the material as the cause. The rate of decompression to ambient conditions permits access to recoverable metastable states with varying band gaps energies, opening the possibility of pressure‐tuneable electronic properties for future applications.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [1];  [1];  [1];  [1];  [3];  [3];  [1];  [4]; ORCiD logo [4];  [5]; ORCiD logo [2]; ORCiD logo [1]
  1. Department of Physics and Astronomy, and HiPSEC University of Nevada, Las Vegas Las Vegas NV 89154 USA
  2. Department of Physics Universität Basel 4056 Basel Switzerland
  3. High Pressure Collaborative Access Team Geophysical Laboratory, Carnegie Institute of Washington Argonne IL 60439 USA
  4. Chemistry University of Southampton Southampton SO17 1BJ UK
  5. Department of Materials Science and Metallurgy University of Cambridge Cambridge CB3 0FS UK, Advanced Institute for Materials Research Tohoku University Sendai 930-8577 Japan
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1476834
Alternate Identifier(s):
OSTI ID: 1463369
Grant/Contract Number:  
DEFG02- 99ER45775.
Resource Type:
Published Article
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition) Journal Volume: 57 Journal Issue: 36; Journal ID: ISSN 1433-7851
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Kearney, John S. C., Graužinytė, Miglė, Smith, Dean, Sneed, Daniel, Childs, Christian, Hinton, Jasmine, Park, Changyong, Smith, Jesse S., Kim, Eunja, Fitch, Samuel D. S., Hector, Andrew L., Pickard, Chris J., Flores‐Livas, José A., and Salamat, Ashkan. Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride. Germany: N. p., 2018. Web. doi:10.1002/anie.201805038.
Kearney, John S. C., Graužinytė, Miglė, Smith, Dean, Sneed, Daniel, Childs, Christian, Hinton, Jasmine, Park, Changyong, Smith, Jesse S., Kim, Eunja, Fitch, Samuel D. S., Hector, Andrew L., Pickard, Chris J., Flores‐Livas, José A., & Salamat, Ashkan. Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride. Germany. https://doi.org/10.1002/anie.201805038
Kearney, John S. C., Graužinytė, Miglė, Smith, Dean, Sneed, Daniel, Childs, Christian, Hinton, Jasmine, Park, Changyong, Smith, Jesse S., Kim, Eunja, Fitch, Samuel D. S., Hector, Andrew L., Pickard, Chris J., Flores‐Livas, José A., and Salamat, Ashkan. Wed . "Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride". Germany. https://doi.org/10.1002/anie.201805038.
@article{osti_1476834,
title = {Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride},
author = {Kearney, John S. C. and Graužinytė, Miglė and Smith, Dean and Sneed, Daniel and Childs, Christian and Hinton, Jasmine and Park, Changyong and Smith, Jesse S. and Kim, Eunja and Fitch, Samuel D. S. and Hector, Andrew L. and Pickard, Chris J. and Flores‐Livas, José A. and Salamat, Ashkan},
abstractNote = {Abstract The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high‐pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn 3 N 4 under compression is now reported. A continuous opening of the optical band gap was observed from 1.3 eV to 3.0 eV over a range of 100 GPa, a 540 nm blue‐shift spanning the entire visible spectrum. The pressure‐mediated band gap opening is general to this material across numerous high‐density polymorphs, implicating the predominant ionic bonding in the material as the cause. The rate of decompression to ambient conditions permits access to recoverable metastable states with varying band gaps energies, opening the possibility of pressure‐tuneable electronic properties for future applications.},
doi = {10.1002/anie.201805038},
journal = {Angewandte Chemie (International Edition)},
number = 36,
volume = 57,
place = {Germany},
year = {Wed Aug 08 00:00:00 EDT 2018},
month = {Wed Aug 08 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/anie.201805038

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

All-electron GW quasiparticle band structures of group 14 nitride compounds
journal, July 2014

  • Chu, Iek-Heng; Kozhevnikov, Anton; Schulthess, Thomas C.
  • The Journal of Chemical Physics, Vol. 141, Issue 4
  • DOI: 10.1063/1.4890325

Hydrostatic pressure dependence of the energy gaps of CdTe in the zinc-blende and rocksalt phases
journal, March 1995


Synthesis of cubic silicon nitride
journal, July 1999

  • Zerr, Andreas; Miehe, Gerhard; Serghiou, George
  • Nature, Vol. 400, Issue 6742
  • DOI: 10.1038/22493

High-pressure synthesis of lithium hydride
journal, August 2012


Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure
journal, January 2016


High Pressure Electrides: A Predictive Chemical and Physical Theory
journal, February 2014

  • Miao, Mao-Sheng; Hoffmann, Roald
  • Accounts of Chemical Research, Vol. 47, Issue 4
  • DOI: 10.1021/ar4002922

Pressure dependence of the direct optical gap and refractive index of Ge and GaAs
journal, April 1989

  • Goni, A. R.; Syassen, K.; Strossner, K.
  • Semiconductor Science and Technology, Vol. 4, Issue 4
  • DOI: 10.1088/0268-1242/4/4/015

Band gaps of diamond under anisotropic stress
journal, April 1992

  • Surh, Michael P.; Louie, Steven G.; Cohen, Marvin L.
  • Physical Review B, Vol. 45, Issue 15
  • DOI: 10.1103/PhysRevB.45.8239

Sn3N4, ein Zinn(IV)-nitrid - Synthese und erste Strukturbestimmung einer binären Zinn-Stickstoff-Verbindung
journal, September 1999


Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride
journal, September 2008

  • Bojdys, Michael J.; Müller, Jens-Oliver; Antonietti, Markus
  • Chemistry - A European Journal, Vol. 14, Issue 27
  • DOI: 10.1002/chem.200800190

Optical Properties of the High-Pressure Phases of SnO 2 : First-Principles Calculation
journal, January 2010

  • Li, Yanlu; Fan, Weiliu; Sun, Honggang
  • The Journal of Physical Chemistry A, Vol. 114, Issue 2
  • DOI: 10.1021/jp909021r

Phase Transformations and Metallization of Magnesium Oxide at High Pressure and Temperature
journal, November 2012


Optical response of tin nitride thin films prepared by halide chemical vapor deposition under atmospheric pressure
journal, April 2003


Tin nitride thin films prepared by radio‐frequency reactive sputtering
journal, June 1995

  • Maruyama, Toshiro; Morishita, Tomonori
  • Journal of Applied Physics, Vol. 77, Issue 12
  • DOI: 10.1063/1.359075

Cubic ZnS under pressure: Optical-absorption edge, phase transition, and calculated equation of state
journal, November 1990


Ab initio random structure searching
journal, January 2011


Magnetron sputtered tin nitride
journal, August 1991


Elastic and structural instability of cubic Sn 3 N 4 and C 3 N 4 under pressure
journal, October 2010


Optical properties and electronic structure of rock-salt ZnO under pressure
journal, July 2003

  • Segura, A.; Sans, J. A.; Manjón, F. J.
  • Applied Physics Letters, Vol. 83, Issue 2
  • DOI: 10.1063/1.1591995

Low-temperature atmospheric pressure chemical vapor deposition of polycrystalline tin nitride thin films
journal, January 1992

  • Gordon, Roy G.; Hoffman, David M.; Riaz, Umar
  • Chemistry of Materials, Vol. 4, Issue 1
  • DOI: 10.1021/cm00019a016

Structural Transformations and Disordering in Zirconolite (CaZrTi 2 O 7 ) at High Pressure
journal, January 2013

  • Salamat, Ashkan; McMillan, Paul F.; Firth, Steven
  • Inorganic Chemistry, Vol. 52, Issue 3
  • DOI: 10.1021/ic302346g

Theoretical prediction of the structure and properties of Sn3N4
journal, October 2004

  • Huang, M.; Feng, Y. P.
  • Journal of Applied Physics, Vol. 96, Issue 7
  • DOI: 10.1063/1.1788836

A CO 2 laser heating system for in situ high pressure-temperature experiments at HPCAT
journal, August 2018

  • Smith, Dean; Smith, Jesse S.; Childs, Christian
  • Review of Scientific Instruments, Vol. 89, Issue 8
  • DOI: 10.1063/1.5040508

Enhancement of Mechanical Hardness in SnO x N y with a Dense High-Pressure Cubic Phase of SnO 2
journal, September 2016


Semiconducting properties of spinel tin nitride and other IV 3 N 4 polymorphs
journal, January 2015

  • Caskey, Christopher M.; Seabold, Jason A.; Stevanović, Vladan
  • Journal of Materials Chemistry C, Vol. 3, Issue 6
  • DOI: 10.1039/C4TC02528H

Carbon nitride frameworks and dense crystalline polymorphs
journal, September 2016


Postaragonite phases of CaCO 3 at lower mantle pressures
journal, January 2018


Über die Produkte der Lichtbogen- und Funkentladung in flüssigem Argon bezw. Stickstoff. Dritte Mitteilung: Über Zinnstickstoff und pyrophores Zinn
journal, January 1909

  • Fischer, Franz; Ilicvici, George
  • Berichte der deutschen chemischen Gesellschaft, Vol. 42, Issue 1
  • DOI: 10.1002/cber.19090420181

Nitrogen-rich transition metal nitrides
journal, July 2013

  • Salamat, Ashkan; Hector, Andrew L.; Kroll, Peter
  • Coordination Chemistry Reviews, Vol. 257, Issue 13-14
  • DOI: 10.1016/j.ccr.2013.01.010

Evaluation of nanocrystalline Sn 3 N 4 derived from ammonolysis of Sn(NEt 2 ) 4 as a negative electrode material for Li-ion and Na-ion batteries
journal, January 2016

  • Li, Xianji; Hector, Andrew L.; Owen, John R.
  • Journal of Materials Chemistry A, Vol. 4, Issue 14
  • DOI: 10.1039/C5TA08287K

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
journal, August 2015

  • Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.
  • Nature, Vol. 525, Issue 7567
  • DOI: 10.1038/nature14964

Observation of the Wigner-Huntington transition to metallic hydrogen
journal, January 2017


High-Pressure Phases of Silane
journal, July 2006


Photoelectrochemical characterisation of indium nitride and tin nitride in aqueous solution
journal, August 2002

  • Lindgren, Torbjörn; Larsson, Magnus; Lindquist, Sten-Eric
  • Solar Energy Materials and Solar Cells, Vol. 73, Issue 4
  • DOI: 10.1016/S0927-0248(02)00206-4

Two-photon spectroscopy of SnO2 under hydrostatic pressure
journal, May 1999


Preparation and characterization of nitrogen-incorporated SnO2 films
journal, August 2006


Obtention de films étain-azote par pulvérisation cathodique réactive-identification de la phase amorphe Sn3N4
journal, December 1975


Programmed Synthesis of Sn 3 N 4 Nanoparticles via a Soft Chemistry Approach with Urea: Application for Ethanol Vapor Sensing
journal, January 2017


Transparent dense sodium
journal, March 2009

  • Ma, Yanming; Eremets, Mikhail; Oganov, Artem R.
  • Nature, Vol. 458, Issue 7235
  • DOI: 10.1038/nature07786

Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability
journal, May 2001

  • Eremets, Mikhail I.; Hemley, Russell J.; Mao, Ho-kwang
  • Nature, Vol. 411, Issue 6834
  • DOI: 10.1038/35075531

Superconductivity in oxygen
journal, June 1998

  • Shimizu, K.; Suhara, K.; Ikumo, M.
  • Nature, Vol. 393, Issue 6687
  • DOI: 10.1038/31656

Preparation of tin nitride via an amide-imide intermediate
journal, May 1992