DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Colloidal Binary Supracrystals with Tunable Structural Lattices

Abstract

Here, colloidal binary supracrystals (SCs) possessing tunable and ordered assembly of two different types of functional nanoparticles (NPs) represent a unique class of artificial materials for both fundamental study and technological applications, but related study has been limited due to substantial challenges in materials growth. Here we report the controlled growth of colloidal binary SCs consisting of Au and Fe3O4 NPs via an oil-in-water emulsion process. The size, stoichiometry, and lattice structure of the SCs can be broadly tuned by the growth parameters. Furthermore, our growth method is general and applicable to other NP building blocks to achieve various functional binary SCs. These as-grown free-standing binary SCs should therefore enable new test beds for exploring different nanoscale interactions ranging from the formation and stability of nanoscale binary phase to the emerging magneto-plasmonic coupling physics.

Authors:
 [1]; ORCiD logo [2];  [3]; ORCiD logo [1]
  1. Univ. of Maryland, College Park, MD (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States); Temple Univ., Philadelphia, PA (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Complex Materials from First Principles (CCM); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1476758
Report Number(s):
BNL-209145-2018-JAAM
Journal ID: ISSN 0002-7863
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 29; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Wang, Peng-peng, Qiao, Qiao, Zhu, Yimei, and Ouyang, Min. Colloidal Binary Supracrystals with Tunable Structural Lattices. United States: N. p., 2018. Web. doi:10.1021/jacs.8b05643.
Wang, Peng-peng, Qiao, Qiao, Zhu, Yimei, & Ouyang, Min. Colloidal Binary Supracrystals with Tunable Structural Lattices. United States. https://doi.org/10.1021/jacs.8b05643
Wang, Peng-peng, Qiao, Qiao, Zhu, Yimei, and Ouyang, Min. Tue . "Colloidal Binary Supracrystals with Tunable Structural Lattices". United States. https://doi.org/10.1021/jacs.8b05643. https://www.osti.gov/servlets/purl/1476758.
@article{osti_1476758,
title = {Colloidal Binary Supracrystals with Tunable Structural Lattices},
author = {Wang, Peng-peng and Qiao, Qiao and Zhu, Yimei and Ouyang, Min},
abstractNote = {Here, colloidal binary supracrystals (SCs) possessing tunable and ordered assembly of two different types of functional nanoparticles (NPs) represent a unique class of artificial materials for both fundamental study and technological applications, but related study has been limited due to substantial challenges in materials growth. Here we report the controlled growth of colloidal binary SCs consisting of Au and Fe3O4 NPs via an oil-in-water emulsion process. The size, stoichiometry, and lattice structure of the SCs can be broadly tuned by the growth parameters. Furthermore, our growth method is general and applicable to other NP building blocks to achieve various functional binary SCs. These as-grown free-standing binary SCs should therefore enable new test beds for exploring different nanoscale interactions ranging from the formation and stability of nanoscale binary phase to the emerging magneto-plasmonic coupling physics.},
doi = {10.1021/jacs.8b05643},
journal = {Journal of the American Chemical Society},
number = 29,
volume = 140,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials
journal, August 2016


A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity
journal, January 2017


Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots
journal, June 2003

  • Redl, F. X.; Cho, K.-S.; Murray, C. B.
  • Nature, Vol. 423, Issue 6943, p. 968-971
  • DOI: 10.1038/nature01702

Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface
journal, July 2010

  • Dong, Angang; Chen, Jun; Vora, Patrick M.
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09188

Structural diversity in binary nanoparticle superlattices
journal, January 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Kotov, Nicholas A.
  • Nature, Vol. 439, Issue 7072, p. 55-59
  • DOI: 10.1038/nature04414

Multi-component superstructures self-assembled from nanocrystal building blocks
journal, January 2016


Three-Dimensional Nanocrystal Superlattices Grown in Nanoliter Microfluidic Plugs
journal, June 2011

  • Bodnarchuk, Maryna I.; Li, Liang; Fok, Alice
  • Journal of the American Chemical Society, Vol. 133, Issue 23
  • DOI: 10.1021/ja201129n

Binary superparticles from preformed Fe3O4 and Au nanoparticles
journal, January 2011

  • Zhang, Xue; Han, Jishu; Yao, Tongjie
  • CrystEngComm, Vol. 13, Issue 19
  • DOI: 10.1039/c1ce05664f

Self-Assembled Au/CdSe Nanocrystal Clusters for Plasmon-Mediated Photocatalytic Hydrogen Evolution
journal, May 2017


Fabrication of CdTe nanoparticles-based superparticles for an improved detection of Cu 2+ and Ag +
journal, January 2012

  • Han, Jishu; Zhang, Xue; Zhou, Yubing
  • J. Mater. Chem., Vol. 22, Issue 6
  • DOI: 10.1039/C1JM14215A

Multicolor upconverted luminescence-encoded superparticles via controlling self-assembly based on hydrophobic lanthanide-doped NaYF4 nanocrystals
journal, January 2011

  • Zhang, Qingbin; Wang, Xin; Zhu, Yimin
  • Journal of Materials Chemistry, Vol. 21, Issue 32
  • DOI: 10.1039/c1jm10350d

In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures
journal, January 2016

  • Ortgies, Dirk H.; de la Cueva, Leonor; del Rosal, Blanca
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 2
  • DOI: 10.1021/acsami.5b10617

Magneto-fluorescent core-shell supernanoparticles
journal, October 2014

  • Chen, Ou; Riedemann, Lars; Etoc, Fred
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6093

Many-Body Effects in Nanocrystal Superlattices: Departure from Sphere Packing Explains Stability of Binary Phases
journal, March 2015

  • Boles, Michael A.; Talapin, Dmitri V.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/jacs.5b00839

Crystallization of Nanocrystals in Spherical Confinement Probed by in Situ X-ray Scattering
journal, May 2018


A Versatile Bottom-up Assembly Approach to Colloidal Spheres from Nanocrystals
journal, September 2007

  • Bai, Feng; Wang, Dingsheng; Huo, Ziyang
  • Angewandte Chemie International Edition, Vol. 46, Issue 35
  • DOI: 10.1002/anie.200701355

Controlling Colloidal Superparticle Growth Through Solvophobic Interactions
journal, March 2008

  • Zhuang, Jiaqi; Wu, Huimeng; Yang, Yongan
  • Angewandte Chemie International Edition, Vol. 47, Issue 12
  • DOI: 10.1002/anie.200705049

Ordered Superparticles with an Enhanced Photoelectric Effect by Sub-Nanometer Interparticle Distance
journal, October 2017

  • Luo, Dan; Qin, Xiaoyun; Song, Qian
  • Advanced Functional Materials, Vol. 27, Issue 44
  • DOI: 10.1002/adfm.201701982

Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement
journal, August 2014

  • de Nijs, Bart; Dussi, Simone; Smallenburg, Frank
  • Nature Materials, Vol. 14, Issue 1
  • DOI: 10.1038/nmat4072

Supercrystalline Colloidal Particles from Artificial Atoms
journal, November 2007

  • Zhuang, Jiaqi; Wu, Huimeng; Yang, Yongan
  • Journal of the American Chemical Society, Vol. 129, Issue 46
  • DOI: 10.1021/ja076494i

Pressure-controlled formation of crystalline, Janus, and core–shell supraparticles
journal, January 2016

  • Kister, Thomas; Mravlak, Marko; Schilling, Tanja
  • Nanoscale, Vol. 8, Issue 27
  • DOI: 10.1039/C6NR01940D

Superlattice formation in binary mixtures of hard-sphere colloids
journal, June 1992


Dense Packings of Hard Spheres of Different Sizes Based on Filling Interstices in Uniform Three-Dimensional Tilings
journal, July 2008

  • Hudson, T. S.; Harrowell, Peter
  • The Journal of Physical Chemistry B, Vol. 112, Issue 27
  • DOI: 10.1021/jp802912a

On the Phase Behavior of Binary Mixtures of Nanoparticles
journal, January 2013

  • Ben-Simon, Avi; Eshet, Hagai; Rabani, Eran
  • ACS Nano, Vol. 7, Issue 2
  • DOI: 10.1021/nn302712h

Formation of Long-Range-Ordered Nanocrystal Superlattices on Silicon Nitride Substrates
journal, May 2001

  • Lin, X. M.; Jaeger, H. M.; Sorensen, C. M.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 17
  • DOI: 10.1021/jp0102062

Energetic and Entropic Contributions to Self-Assembly of Binary Nanocrystal Superlattices: Temperature as the Structure-Directing Factor
journal, September 2010

  • Bodnarchuk, Maryna I.; Kovalenko, Maksym V.; Heiss, Wolfgang
  • Journal of the American Chemical Society, Vol. 132, Issue 34
  • DOI: 10.1021/ja103083q

Topological structure prediction in binary nanoparticle superlattices
journal, January 2017


Densest binary sphere packings
journal, February 2012


Polymorphism in AB 13 Nanoparticle Superlattices:  An Example of Semiconductor−Metal Metamaterials
journal, June 2005

  • Shevchenko, Elena V.; Talapin, Dmitri V.; O'Brien, Stephen
  • Journal of the American Chemical Society, Vol. 127, Issue 24
  • DOI: 10.1021/ja050510z

Substitutional doping in nanocrystal superlattices
journal, August 2015

  • Cargnello, Matteo; Johnston-Peck, Aaron C.; Diroll, Benjamin T.
  • Nature, Vol. 524, Issue 7566
  • DOI: 10.1038/nature14872

Binary nanoparticle superlattices of soft-particle systems
journal, July 2015


Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements
journal, December 1980


Generic phase diagram of binary superlattices
journal, August 2016

  • Tkachenko, Alexei V.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 37
  • DOI: 10.1073/pnas.1525358113

Interparticle Forces Underlying Nanoparticle Self-Assemblies
journal, October 2015


Au/NaYF 4  : Yb,Er Binary Superparticles: Synthesis and Optical Properties
journal, June 2015

  • Zhao, Junwei; Wu, Jian; Xue, Junfei
  • Israel Journal of Chemistry, Vol. 56, Issue 4
  • DOI: 10.1002/ijch.201500021

Works referencing / citing this record:

From Atoms to Lives: The Evolution of Nanoparticle Assemblies
journal, January 2019

  • Xue, Zhenjie; Yan, Cong; Wang, Tie
  • Advanced Functional Materials, Vol. 29, Issue 12
  • DOI: 10.1002/adfm.201807658

Formation of Multicomponent Size‐Sorted Assembly Patterns by Tunable Templated Dewetting
journal, October 2018


Formation of Multicomponent Size‐Sorted Assembly Patterns by Tunable Templated Dewetting
journal, December 2018

  • Guo, Dan; Zheng, Xu; Wang, Xiaohe
  • Angewandte Chemie International Edition, Vol. 57, Issue 49
  • DOI: 10.1002/anie.201810728

Recent Advances in Multicomponent Particle Assembly
journal, August 2018


Polymer-guided assembly of inorganic nanoparticles
journal, January 2020

  • Yi, Chenglin; Yang, Yiqun; Liu, Ben
  • Chemical Society Reviews, Vol. 49, Issue 2
  • DOI: 10.1039/c9cs00725c

Assembly by solvent evaporation: equilibrium structures and relaxation times
journal, January 2019


Local Acoustic Fields Powered Assembly of Microparticles and Applications
journal, December 2019

  • Shen, Hui; Zhao, Kangdong; Wang, Zhiwen
  • Micromachines, Vol. 10, Issue 12
  • DOI: 10.3390/mi10120882