skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on January 1, 2019

Title: How accurate are static polarizability predictions from density functional theory? An assessment over 132 species at equilibrium geometry

Static polarizabilities are the first response of the electron density to electric fields, and are therefore important for predicting intermolecular and molecule-field interactions. They also offer a global measure of the accuracy of the treatment of excited states by density functionals in a formally exact manner. We have developed a database of benchmark static polarizabilities for 132 small species at equilibrium geometry, using coupled cluster theory through triple excitations (extrapolated to the complete basis set limit), for the purpose of developing and assessing density functionals. The performance of 60 popular and recent functionals are also assessed, which indicates that double hybrid functionals perform the best, having RMS relative errors in the range of 2.5-3.8%. Many hybrid functionals also give quite reasonable estimates with 4-5% RMS relative error. A few meta-GGAs like mBEEF and MVS yield performance comparable to hybrids, indicating potential for improved excited state predictions relative to typical local functionals. Some recent functionals however are found to be prone to catastrophic failure (possibly as a consequence of overparameterization), indicating a need for caution in applying these.
Authors:
ORCiD logo [1] ; ORCiD logo [2]
  1. Univ. of California, Berkeley, CA (United States). Kenneth S. Pitzer Center for Theoretical Chemistry, Dept. of Chemistry
  2. Univ. of California, Berkeley, CA (United States). Kenneth S. Pitzer Center for Theoretical Chemistry, Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division
Publication Date:
Grant/Contract Number:
AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 20; Journal Issue: 30; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS
OSTI Identifier:
1476598

Hait, Diptarka, and Head-Gordon, Martin. How accurate are static polarizability predictions from density functional theory? An assessment over 132 species at equilibrium geometry. United States: N. p., Web. doi:10.1039/c8cp03569e.
Hait, Diptarka, & Head-Gordon, Martin. How accurate are static polarizability predictions from density functional theory? An assessment over 132 species at equilibrium geometry. United States. doi:10.1039/c8cp03569e.
Hait, Diptarka, and Head-Gordon, Martin. 2018. "How accurate are static polarizability predictions from density functional theory? An assessment over 132 species at equilibrium geometry". United States. doi:10.1039/c8cp03569e.
@article{osti_1476598,
title = {How accurate are static polarizability predictions from density functional theory? An assessment over 132 species at equilibrium geometry},
author = {Hait, Diptarka and Head-Gordon, Martin},
abstractNote = {Static polarizabilities are the first response of the electron density to electric fields, and are therefore important for predicting intermolecular and molecule-field interactions. They also offer a global measure of the accuracy of the treatment of excited states by density functionals in a formally exact manner. We have developed a database of benchmark static polarizabilities for 132 small species at equilibrium geometry, using coupled cluster theory through triple excitations (extrapolated to the complete basis set limit), for the purpose of developing and assessing density functionals. The performance of 60 popular and recent functionals are also assessed, which indicates that double hybrid functionals perform the best, having RMS relative errors in the range of 2.5-3.8%. Many hybrid functionals also give quite reasonable estimates with 4-5% RMS relative error. A few meta-GGAs like mBEEF and MVS yield performance comparable to hybrids, indicating potential for improved excited state predictions relative to typical local functionals. Some recent functionals however are found to be prone to catastrophic failure (possibly as a consequence of overparameterization), indicating a need for caution in applying these.},
doi = {10.1039/c8cp03569e},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 30,
volume = 20,
place = {United States},
year = {2018},
month = {1}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996
  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965

Semiempirical GGA-type density functional constructed with a long-range dispersion correction
journal, January 2006
  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 27, Issue 15, p. 1787-1799
  • DOI: 10.1002/jcc.20495

A new hybrid exchange�correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
journal, July 2004
  • Yanai, Takeshi; Tew, David P.; Handy, Nicholas C.
  • Chemical Physics Letters, Vol. 393, Issue 1-3, p. 51-57
  • DOI: 10.1016/j.cplett.2004.06.011

Density?functional thermochemistry. III. The role of exact exchange
journal, April 1993
  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
journal, November 2006
  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 125, Issue 19, Article No. 194101
  • DOI: 10.1063/1.2370993

Inhomogeneous Electron Gas
journal, November 1964

Accurate and simple analytic representation of the electron-gas correlation energy
journal, June 1992