skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plasmon-Tunable Tip Pyramids: Monopole Nanoantennas for Near-Field Scanning Optical Microscopy

Abstract

Squeezing optical fields into nanometer scale is the key step to perform spatially resolved near-field optics. In scattering-type near-field optical microscopy, this task is accomplished by nanoantennas that convert propagating radiation to local near-fields and vice versa. The usual nanoantenna is composed by an elongated metal structure whose longitudinal dimension is scaled to support dipole modes of localized surface plasmon resonances. However, monopole modes can also be explored if the elongated metal nanoparticle is electrically grounded on a flat metallic plateau that acts like a mirror providing the monopole's image that closes the dipole system. Here, a method for batch production of monopole nanoantennas for scattering-type near-field scanning optical microscopy is presented. The nanoantennas are composed of a micropyramidal body with a nanopyramidal end whose lateral dimension can be scaled to fine-tune localized surface plasmon resonance modes. In conclusion, the monopole character of the nanoantennas is revealed by electron energy loss spectroscopy, and their efficiency and reproducibility are tested in tip-enhanced Raman spectroscopy experiments performed on single-layer graphene and single-walled carbon nanotubes.

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [3];  [3];  [4];  [1];  [3];  [3]
  1. Instituto Nacional de Metrologia, Duque de Caxias, RJ (Brazil)
  2. Instituto Nacional de Metrologia, Duque de Caxias, RJ (Brazil); Univ. Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)
  3. Univ. Federal de Minas Gerais, Belo Horizonte, MG (Brazil)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1476588
Alternate Identifier(s):
OSTI ID: 1463747
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Optical Materials
Additional Journal Information:
Related Information: © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; Journal ID: ISSN 2195-1071
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; electron energy loss spectroscopy; localized surface plasmon resonance; monopole nanoantennas; scanning near‐field optical microscopy; tip-enhanced Raman Spectroscopy

Citation Formats

Vasconcelos, Thiago L., Archanjo, Bráulio S., Oliveira, Bruno S., Valaski, Rogério, Cordeiro, Rafael C., Medeiros, Helton G., Rabelo, Cassiano, Ribeiro, Aroldo, Ercius, Peter, Achete, Carlos A., Jorio, Ado, and Cançado, Luiz Gustavo. Plasmon-Tunable Tip Pyramids: Monopole Nanoantennas for Near-Field Scanning Optical Microscopy. United States: N. p., 2018. Web. https://doi.org/10.1002/adom.201800528.
Vasconcelos, Thiago L., Archanjo, Bráulio S., Oliveira, Bruno S., Valaski, Rogério, Cordeiro, Rafael C., Medeiros, Helton G., Rabelo, Cassiano, Ribeiro, Aroldo, Ercius, Peter, Achete, Carlos A., Jorio, Ado, & Cançado, Luiz Gustavo. Plasmon-Tunable Tip Pyramids: Monopole Nanoantennas for Near-Field Scanning Optical Microscopy. United States. https://doi.org/10.1002/adom.201800528
Vasconcelos, Thiago L., Archanjo, Bráulio S., Oliveira, Bruno S., Valaski, Rogério, Cordeiro, Rafael C., Medeiros, Helton G., Rabelo, Cassiano, Ribeiro, Aroldo, Ercius, Peter, Achete, Carlos A., Jorio, Ado, and Cançado, Luiz Gustavo. Wed . "Plasmon-Tunable Tip Pyramids: Monopole Nanoantennas for Near-Field Scanning Optical Microscopy". United States. https://doi.org/10.1002/adom.201800528. https://www.osti.gov/servlets/purl/1476588.
@article{osti_1476588,
title = {Plasmon-Tunable Tip Pyramids: Monopole Nanoantennas for Near-Field Scanning Optical Microscopy},
author = {Vasconcelos, Thiago L. and Archanjo, Bráulio S. and Oliveira, Bruno S. and Valaski, Rogério and Cordeiro, Rafael C. and Medeiros, Helton G. and Rabelo, Cassiano and Ribeiro, Aroldo and Ercius, Peter and Achete, Carlos A. and Jorio, Ado and Cançado, Luiz Gustavo},
abstractNote = {Squeezing optical fields into nanometer scale is the key step to perform spatially resolved near-field optics. In scattering-type near-field optical microscopy, this task is accomplished by nanoantennas that convert propagating radiation to local near-fields and vice versa. The usual nanoantenna is composed by an elongated metal structure whose longitudinal dimension is scaled to support dipole modes of localized surface plasmon resonances. However, monopole modes can also be explored if the elongated metal nanoparticle is electrically grounded on a flat metallic plateau that acts like a mirror providing the monopole's image that closes the dipole system. Here, a method for batch production of monopole nanoantennas for scattering-type near-field scanning optical microscopy is presented. The nanoantennas are composed of a micropyramidal body with a nanopyramidal end whose lateral dimension can be scaled to fine-tune localized surface plasmon resonance modes. In conclusion, the monopole character of the nanoantennas is revealed by electron energy loss spectroscopy, and their efficiency and reproducibility are tested in tip-enhanced Raman spectroscopy experiments performed on single-layer graphene and single-walled carbon nanotubes.},
doi = {10.1002/adom.201800528},
journal = {Advanced Optical Materials},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Antennas for light
journal, February 2011


Plasmon 3D Electron Tomography and Local Electric-Field Enhancement of Engineered Plasmonic Nanoantennas
journal, December 2017


Visualizing graphene edges using tip-enhanced Raman spectroscopy
journal, July 2013

  • Su, Weitao; Roy, Debdulal
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 31, Issue 4
  • DOI: 10.1116/1.4813848

Effective Wavelength Scaling for Optical Antennas
journal, June 2007


Tip-enhanced Raman scattering of graphene: Tip-enhanced Raman scattering of graphene
journal, August 2017

  • Beams, Ryan
  • Journal of Raman Spectroscopy, Vol. 49, Issue 1
  • DOI: 10.1002/jrs.5211

Drastic Reduction of Plasmon Damping in Gold Nanorods
journal, January 2002


Highly Reproducible Near-Field Optical Imaging with Sub-20-nm Resolution Based on Template-Stripped Gold Pyramids
journal, September 2012

  • Johnson, Timothy W.; Lapin, Zachary J.; Beams, Ryan
  • ACS Nano, Vol. 6, Issue 10
  • DOI: 10.1021/nn303496g

Tip-enhanced Raman mapping of local strain in graphene
journal, April 2015


Tip-enhanced Raman spectroscopy of carbon nanotubes
journal, October 2009

  • Cançado, Luiz Gustavo; Hartschuh, Achim; Novotny, Lukas
  • Journal of Raman Spectroscopy, Vol. 40, Issue 10
  • DOI: 10.1002/jrs.2448

Toward 10 meV Electron Energy-Loss Spectroscopy Resolution for Plasmonics
journal, April 2014

  • Bellido, Edson P.; Rossouw, David; Botton, Gianluigi A.
  • Microscopy and Microanalysis, Vol. 20, Issue 3
  • DOI: 10.1017/S1431927614000609

Nanoantennas for visible and infrared radiation
journal, January 2012


Spatial Coherence in Near-Field Raman Scattering
journal, October 2014


Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays
journal, June 2014

  • Li, Shi-Qiang; Zhou, Wei; Bruce Buchholz, D.
  • Applied Physics Letters, Vol. 104, Issue 23
  • DOI: 10.1063/1.4881323

Tuning Localized Surface Plasmon Resonance in Scanning Near-Field Optical Microscopy Probes
journal, May 2015

  • Vasconcelos, Thiago L.; Archanjo, Bráulio S.; Fragneaud, Benjamin
  • ACS Nano, Vol. 9, Issue 6
  • DOI: 10.1021/acsnano.5b01794

Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture
journal, May 2013

  • Lindquist, Nathan C.; Johnson, Timothy W.; Nagpal, Prashant
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01857

Tip-Enhanced Raman Spectroscopy: Technique and Recent Advances
journal, April 2017


Advances in Tip-Enhanced Near-Field Raman Microscopy Using Nanoantennas
journal, February 2017


Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles
journal, October 2013

  • Nicoletti, Olivia; de la Peña, Francisco; Leary, Rowan K.
  • Nature, Vol. 502, Issue 7469
  • DOI: 10.1038/nature12469

λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence
journal, January 2007

  • Taminiau, Tim H.; Moerland, Robert J.; Segerink, Frans B.
  • Nano Letters, Vol. 7, Issue 1
  • DOI: 10.1021/nl061726h

Ultrasmooth Patterned Metals for Plasmonics and Metamaterials
journal, July 2009


Developments in and practical guidelines for tip-enhanced Raman spectroscopy
journal, January 2012

  • Stadler, Johannes; Schmid, Thomas; Zenobi, Renato
  • Nanoscale, Vol. 4, Issue 6, p. 1856-1870
  • DOI: 10.1039/C1NR11143D

Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials
journal, September 2015


Tip-enhanced Raman spectroscopy: tip-related issues
journal, August 2015

  • Huang, Teng-Xiang; Huang, Sheng-Chao; Li, Mao-Hua
  • Analytical and Bioanalytical Chemistry, Vol. 407, Issue 27
  • DOI: 10.1007/s00216-015-8968-8

Mesoscale Metallic Pyramids with Nanoscale Tips
journal, July 2005

  • Henzie, Joel; Kwak, Eun-Soo; Odom, Teri W.
  • Nano Letters, Vol. 5, Issue 7
  • DOI: 10.1021/nl0506148

Accurate measurement of enhancement factor in tip-enhanced Raman spectroscopy through elimination of far-field artefacts
journal, March 2014

  • Kumar, Naresh; Rae, Alasdair; Roy, Debdulal
  • Applied Physics Letters, Vol. 104, Issue 12
  • DOI: 10.1063/1.4869184