Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions
Abstract
The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades 1. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres 2, are believed to undergo structural transitions 3,4 that release hydrogen from deeper layers and may lead to compact stratified cores 5-7. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature-pressure regime in which methane first transforms into a mixture of hydrocarbon polymers8, whereas, in deeper layers, a phase separation into diamond and hydrogen may be possible. Here we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C 8H 8) n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus 9. Our findings demonstrate the necessity of high pressures for initiating carbon-hydrogen separation 3 and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments 4,8,10. Our results will inform mass-radiusmore »
- Authors:
- more »
- Publication Date:
- Research Org.:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
- Sponsoring Org.:
- USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
- OSTI Identifier:
- 1476528
- Grant/Contract Number:
- AC02-05CH11231
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Nature Astronomy
- Additional Journal Information:
- Journal Volume: 1; Journal Issue: 9; Journal ID: ISSN 2397-3366
- Publisher:
- Springer Nature
- Country of Publication:
- United States
- Language:
- English
Citation Formats
Kraus, D., Vorberger, J., Pak, A., Hartley, N. J., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Roth, M., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., Döppner, T., and Falcone, R. W. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. United States: N. p., 2017.
Web. doi:10.1038/s41550-017-0219-9.
Kraus, D., Vorberger, J., Pak, A., Hartley, N. J., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Roth, M., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., Döppner, T., & Falcone, R. W. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. United States. doi:10.1038/s41550-017-0219-9.
Kraus, D., Vorberger, J., Pak, A., Hartley, N. J., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Roth, M., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., Döppner, T., and Falcone, R. W. Mon .
"Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions". United States. doi:10.1038/s41550-017-0219-9. https://www.osti.gov/servlets/purl/1476528.
@article{osti_1476528,
title = {Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions},
author = {Kraus, D. and Vorberger, J. and Pak, A. and Hartley, N. J. and Fletcher, L. B. and Frydrych, S. and Galtier, E. and Gamboa, E. J. and Gericke, D. O. and Glenzer, S. H. and Granados, E. and MacDonald, M. J. and MacKinnon, A. J. and McBride, E. E. and Nam, I. and Neumayer, P. and Roth, M. and Saunders, A. M. and Schuster, A. K. and Sun, P. and van Driel, T. and Döppner, T. and Falcone, R. W.},
abstractNote = {The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades1. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres2, are believed to undergo structural transitions3,4 that release hydrogen from deeper layers and may lead to compact stratified cores5-7. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature-pressure regime in which methane first transforms into a mixture of hydrocarbon polymers8, whereas, in deeper layers, a phase separation into diamond and hydrogen may be possible. Here we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C8H8)n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus9. Our findings demonstrate the necessity of high pressures for initiating carbon-hydrogen separation3 and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments4,8,10. Our results will inform mass-radius relationships of carbon-bearing exoplanets11, provide constraints for their internal layer structure and improve evolutionary models of Uranus and Neptune, in which carbon-hydrogen separation could influence the convective heat transport7.},
doi = {10.1038/s41550-017-0219-9},
journal = {Nature Astronomy},
number = 9,
volume = 1,
place = {United States},
year = {2017},
month = {8}
}
Web of Science
Works referenced in this record:
Dissociation of Methane into Hydrocarbons at Extreme (Planetary) Pressure and Temperature
journal, February 1997
- Ancilotto, F.
- Science, Vol. 275, Issue 5304
HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
journal, May 2006
- MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
- Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
Decomposition of hydrocarbons to hydrogen and carbon
journal, May 2009
- Ahmed, Shakeel; Aitani, Abdullah; Rahman, Faizur
- Applied Catalysis A: General, Vol. 359, Issue 1-2, p. 1-24
Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
journal, November 2004
- Celliers, P. M.; Bradley, D. K.; Collins, G. W.
- Review of Scientific Instruments, Vol. 75, Issue 11
Interior Structure of Neptune: Comparison with Uranus
journal, August 1991
- Hubbard, W. B.; Nellis, W. J.; Mitchell, A. C.
- Science, Vol. 253, Issue 5020
Matter under extreme conditions experiments at the Linac Coherent Light Source
journal, April 2016
- Glenzer, S. H.; Fletcher, L. B.; Galtier, E.
- Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 49, Issue 9
The ice layer in Uranus and Neptune—diamonds in the sky?
journal, July 1981
- Ross, Marvin
- Nature, Vol. 292, Issue 5822
High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves
journal, May 2010
- Barrios, M. A.; Hicks, D. G.; Boehly, T. R.
- Physics of Plasmas, Vol. 17, Issue 5
Interiors of Giant Planets Inside and Outside the Solar System
journal, October 1999
- Guillot, T.
- Science, Vol. 286, Issue 5437
Laser interferometer for measuring high velocities of any reflecting surface
journal, November 1972
- Barker, L. M.; Hollenbach, R. E.
- Journal of Applied Physics, Vol. 43, Issue 11
Dissociation of CH4 at High Pressures and Temperatures: Diamond Formation in Giant Planet Interiors?
journal, October 1999
- Benedetti, L. R.
- Science, Vol. 286, Issue 5437
Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets
journal, May 2009
- Hirai, Hisako; Konagai, Keisuke; Kawamura, Taro
- Physics of the Earth and Planetary Interiors, Vol. 174, Issue 1-4
Diffusion of hydrogen from a microwave plasma into diamond and its interaction with dopants and defects
journal, March 2002
- Uzan-Saguy, C.; Cytermann, C.; Fizgeer, B.
- Diamond and Related Materials, Vol. 11, Issue 3-6
The properties and applications of nanodiamonds
journal, December 2011
- Mochalin, Vadym N.; Shenderova, Olga; Ho, Dean
- Nature Nanotechnology, Vol. 7, Issue 1
H/He demixing and the cooling behavior of Saturn
journal, March 2016
- Püstow, Robert; Nettelmann, Nadine; Lorenzen, Winfried
- Icarus, Vol. 267
Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar)
journal, September 1981
- Nellis, W. J.; Ree, F. H.; van Thiel, M.
- The Journal of Chemical Physics, Vol. 75, Issue 6
CSPAD-140k: A versatile detector for LCLS experiments
journal, August 2013
- Herrmann, Sven; Boutet, Sébastien; Duda, Brian
- Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 718
Chemical processes in the deep interior of Uranus
journal, February 2011
- Chau, Ricky; Hamel, Sebastien; Nellis, William J.
- Nature Communications, Vol. 2, Issue 1
Uranus evolution models with simple thermal boundary layers
journal, September 2016
- Nettelmann, N.; Wang, K.; Fortney, J. J.
- Icarus, Vol. 275
Electrical conductivities of methane, benzene, and polybutene shock compressed to 60 GPa (600 kbar)
journal, July 2001
- Nellis, W. J.; Hamilton, D. C.; Mitchell, A. C.
- The Journal of Chemical Physics, Vol. 115, Issue 2
Works referencing / citing this record:
Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa
journal, March 2019
- Hartley, N. J.; Brown, S.; Cowan, T. E.
- Scientific Reports, Vol. 9, Issue 1
High Pressure Hydrocarbons Revisited: From van der Waals Compounds to Diamond
journal, May 2019
- Conway, Lewis J.; Hermann, Andreas
- Geosciences, Vol. 9, Issue 5