DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions

Abstract

The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades1. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres2, are believed to undergo structural transitions3,4 that release hydrogen from deeper layers and may lead to compact stratified cores5-7. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature-pressure regime in which methane first transforms into a mixture of hydrocarbon polymers8, whereas, in deeper layers, a phase separation into diamond and hydrogen may be possible. Here we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C8H8)n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus9. Our findings demonstrate the necessity of high pressures for initiating carbon-hydrogen separation3 and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments4,8,10. Our results will inform mass-radius relationships of carbon-bearing exoplanets11, provide constraints for their internal layermore » structure and improve evolutionary models of Uranus and Neptune, in which carbon-hydrogen separation could influence the convective heat transport7.« less

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [5];  [6];  [5];  [5];  [7];  [5];  [5];  [8];  [5];  [9];  [5];  [10];  [11];  [12];  [2];  [13] more »;  [5];  [3];  [14] « less
  1. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Univ. of California, Berkeley, CA (United States). Department of Physics; Technische Universitat Dresden (Germany). Institute of Solid State and Materials Physics
  2. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Osaka University (Japan). Open and Transdisciplinary Research Institute
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  6. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Technische Universitat Darmstadt (Germany). Institut fur Kernphysik
  7. University of Warwick, Coventry (United Kingdom). Centre for Fusion, Space and Astrophysics, Department of Physics
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States)
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States); European XFEL GmbH, Schenefeld (Germany)
  10. GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany)
  11. Technische Universitat Darmstadt (Germany). Institut fur Kernphysik
  12. Univ. of California, Berkeley, CA (United States). Department of Physics
  13. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States). Department of Physics
  14. Univ. of California, Berkeley, CA (United States). Department of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1393331
Alternate Identifier(s):
OSTI ID: 1476528
Report Number(s):
LLNL-JRNL-707514
Journal ID: ISSN 2397-3366; PII: 219
Grant/Contract Number:  
AC52-07NA27344; AC02-76SF00515; FG52-10NA29649; NA0001859; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Astronomy
Additional Journal Information:
Journal Volume: 1; Journal Issue: 9; Journal ID: ISSN 2397-3366
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Core processes; Giant planets; Phase transitions and critical phenomena

Citation Formats

Kraus, D., Vorberger, J., Pak, A., Hartley, N. J., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Roth, M., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., Döppner, T., and Falcone, R. W. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. United States: N. p., 2017. Web. doi:10.1038/s41550-017-0219-9.
Kraus, D., Vorberger, J., Pak, A., Hartley, N. J., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Roth, M., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., Döppner, T., & Falcone, R. W. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. United States. https://doi.org/10.1038/s41550-017-0219-9
Kraus, D., Vorberger, J., Pak, A., Hartley, N. J., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Roth, M., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., Döppner, T., and Falcone, R. W. Mon . "Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions". United States. https://doi.org/10.1038/s41550-017-0219-9. https://www.osti.gov/servlets/purl/1393331.
@article{osti_1393331,
title = {Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions},
author = {Kraus, D. and Vorberger, J. and Pak, A. and Hartley, N. J. and Fletcher, L. B. and Frydrych, S. and Galtier, E. and Gamboa, E. J. and Gericke, D. O. and Glenzer, S. H. and Granados, E. and MacDonald, M. J. and MacKinnon, A. J. and McBride, E. E. and Nam, I. and Neumayer, P. and Roth, M. and Saunders, A. M. and Schuster, A. K. and Sun, P. and van Driel, T. and Döppner, T. and Falcone, R. W.},
abstractNote = {The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades1. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres2, are believed to undergo structural transitions3,4 that release hydrogen from deeper layers and may lead to compact stratified cores5-7. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature-pressure regime in which methane first transforms into a mixture of hydrocarbon polymers8, whereas, in deeper layers, a phase separation into diamond and hydrogen may be possible. Here we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C8H8)n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus9. Our findings demonstrate the necessity of high pressures for initiating carbon-hydrogen separation3 and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments4,8,10. Our results will inform mass-radius relationships of carbon-bearing exoplanets11, provide constraints for their internal layer structure and improve evolutionary models of Uranus and Neptune, in which carbon-hydrogen separation could influence the convective heat transport7.},
doi = {10.1038/s41550-017-0219-9},
journal = {Nature Astronomy},
number = 9,
volume = 1,
place = {United States},
year = {Mon Aug 21 00:00:00 EDT 2017},
month = {Mon Aug 21 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 126 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
journal, May 2006

  • MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.031

Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
journal, November 2004

  • Celliers, P. M.; Bradley, D. K.; Collins, G. W.
  • Review of Scientific Instruments, Vol. 75, Issue 11
  • DOI: 10.1063/1.1807008

High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves
journal, May 2010

  • Barrios, M. A.; Hicks, D. G.; Boehly, T. R.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3358144

Interiors of Giant Planets Inside and Outside the Solar System
journal, October 1999


Laser interferometer for measuring high velocities of any reflecting surface
journal, November 1972

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 43, Issue 11
  • DOI: 10.1063/1.1660986

H/He demixing and the cooling behavior of Saturn
journal, March 2016


CSPAD-140k: A versatile detector for LCLS experiments
journal, August 2013

  • Herrmann, Sven; Boutet, Sébastien; Duda, Brian
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 718
  • DOI: 10.1016/j.nima.2013.01.057

Chemical processes in the deep interior of Uranus
journal, February 2011

  • Chau, Ricky; Hamel, Sebastien; Nellis, William J.
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1198

Uranus evolution models with simple thermal boundary layers
journal, September 2016


Electrical conductivities of methane, benzene, and polybutene shock compressed to 60 GPa (600 kbar)
journal, July 2001

  • Nellis, W. J.; Hamilton, D. C.; Mitchell, A. C.
  • The Journal of Chemical Physics, Vol. 115, Issue 2
  • DOI: 10.1063/1.1379537

Decomposition of hydrocarbons to hydrogen and carbon
journal, May 2009

  • Ahmed, Shakeel; Aitani, Abdullah; Rahman, Faizur
  • Applied Catalysis A: General, Vol. 359, Issue 1-2, p. 1-24
  • DOI: 10.1016/j.apcata.2009.02.038

Interior Structure of Neptune: Comparison with Uranus
journal, August 1991


Matter under extreme conditions experiments at the Linac Coherent Light Source
journal, April 2016

  • Glenzer, S. H.; Fletcher, L. B.; Galtier, E.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 49, Issue 9
  • DOI: 10.1088/0953-4075/49/9/092001

The ice layer in Uranus and Neptune—diamonds in the sky?
journal, July 1981


Shock Wave Compression of Condensed Matter
book, January 2012


Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets
journal, May 2009

  • Hirai, Hisako; Konagai, Keisuke; Kawamura, Taro
  • Physics of the Earth and Planetary Interiors, Vol. 174, Issue 1-4
  • DOI: 10.1016/j.pepi.2008.06.011

Diffusion of hydrogen from a microwave plasma into diamond and its interaction with dopants and defects
journal, March 2002


The properties and applications of nanodiamonds
journal, December 2011

  • Mochalin, Vadym N.; Shenderova, Olga; Ho, Dean
  • Nature Nanotechnology, Vol. 7, Issue 1
  • DOI: 10.1038/nnano.2011.209

Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar)
journal, September 1981

  • Nellis, W. J.; Ree, F. H.; van Thiel, M.
  • The Journal of Chemical Physics, Vol. 75, Issue 6
  • DOI: 10.1063/1.442401

Multiphase equation of state for carbon addressing high pressures and temperatures
journal, June 2014


Giant Planets
text, January 2014


Uranus evolution models with simple thermal boundary layers
text, January 2016


Works referencing / citing this record:

Density response to short-pulse excitation in gold
journal, March 2019

  • Ndione, P. D.; Weber, S. T.; Rethfeld, B.
  • Contributions to Plasma Physics, Vol. 59, Issue 4-5
  • DOI: 10.1002/ctpp.201800186

Refractive index and polarizability of polystyrene under shock compression
journal, May 2018


Fifth User Workshop on high-power lasers at the Linac Coherent Light Source
journal, September 2018


Sixth user workshop on high-power lasers at the linac coherent light source
journal, March 2019


Femtosecond laser produced periodic plasma in a colloidal crystal probed by XFEL radiation
journal, July 2020

  • Mukharamova, Nastasia; Lazarev, Sergey; Meijer, Janne-Mieke
  • Scientific Reports, Vol. 10, Issue 1
  • DOI: 10.1038/s41598-020-67214-z

Thermal evolution of Uranus and Neptune: I. Adiabatic models
journal, December 2019


High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion
journal, May 2018

  • Kraus, D.; Hartley, N. J.; Frydrych, S.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5017908

Development and characterization of liquid argon and methane microjets for high-rep-rate laser-plasma experiments
journal, October 2018

  • Kim, Jongjin B.; Schoenwaelder, Christopher; Glenzer, Siegfried H.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5038561

Equations of state for polyethylene and its shock-driven decomposition products
journal, July 2019

  • Maerzke, Katie A.; Coe, Joshua D.; Ticknor, Christopher
  • Journal of Applied Physics, Vol. 126, Issue 4
  • DOI: 10.1063/1.5099371

Electronic bandgap of water in the superionic and plasma phases
journal, September 2019

  • Li, Jiangtao; Shu, Hua; Sun, Yi
  • Physics of Plasmas, Vol. 26, Issue 9
  • DOI: 10.1063/1.5110544

Thermomechanical response of thickly tamped targets and diamond anvil cells under pulsed hard x-ray irradiation
journal, May 2020

  • Meza-Galvez, J.; Gomez-Perez, N.; Marshall, A. S.
  • Journal of Applied Physics, Vol. 127, Issue 19
  • DOI: 10.1063/1.5141360

Characterizing the ionization potential depression in dense carbon plasmas with high-precision spectrally resolved x-ray scattering
journal, November 2018

  • Kraus, D.; Bachmann, B.; Barbrel, B.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aadd6c

Effect of non-adiabatic thermal profiles on the inferred compositions of Uranus and Neptune
journal, May 2019

  • Podolak, Morris; Helled, Ravit; Schubert, Gerald
  • Monthly Notices of the Royal Astronomical Society, Vol. 487, Issue 2
  • DOI: 10.1093/mnras/stz1467

Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa
text, January 2019

  • Hartley, N. J.; Brown, S.; Cowan, T. E.
  • GSI Helmholtzzentrum fuer Schwerionenforschung, GSI, Darmstadt
  • DOI: 10.15120/gsi-2019-00575

Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS
text, January 2018

  • Seiboth, F.; Fletcher, L. B.; McGonegle, D.
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2018-02216

High Pressure Hydrocarbons Revisited: From van der Waals Compounds to Diamond
journal, May 2019


Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS
journal, May 2018

  • Seiboth, F.; Fletcher, L. B.; McGonegle, D.
  • Applied Physics Letters, Vol. 112, Issue 22
  • DOI: 10.1063/1.5031907

Femtosecond laser produced periodic plasma in a colloidal crystal probed by XFEL radiation
text, January 2020

  • Mukharamova, Nastasia; Lazarev, Sergey; Meijer, Janne-Mieke
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2020-02570

Effect of non-adiabatic thermal profiles on the inferred compositions of Uranus and Neptune
text, January 2019

  • Podolak, Morris; Helled, Ravit; Schubert, Gerald
  • Oxford University Press
  • DOI: 10.5167/uzh-182777

Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa
journal, March 2019


Thermal evolution of Uranus and Neptune: II. Deep thermal boundary layer
journal, June 2021


Measurement of diamond nucleation rates from hydrocarbons at conditions comparable to the interiors of icy giant planets
text, January 2020

  • Schuster, A. K.; Hartley, N. J.; Vorberger, J.
  • GSI Helmholtzzentrum fuer Schwerionenforschung, GSI, Darmstadt
  • DOI: 10.15120/gsi-2020-00340

Thermal evolution of Uranus and Neptune I: adiabatic models
text, January 2019


Femtosecond laser produced periodic plasma in a colloidal crystal probed by XFEL radiation
text, January 2019