skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced methane emissions from tropical wetlands during the 2011 La Niña

Abstract

Year-to-year variations in the atmospheric methane (CH4) growth rate show significant correlation with climatic drivers. The second half of 2010 and the first half of 2011 experienced the strongest La Niña since the early 1980s, when global surface networks started monitoring atmospheric CH4 mole fractions. We use these surface measurements, retrievals of column-averaged CH4 mole fractions from GOSAT, new wetland inundation estimates, and atmospheric δ13C-CH4 measurements to estimate the impact of this strong La Niña on the global atmospheric CH4 budget. By performing atmospheric inversions, we find evidence of an increase in tropical CH4 emissions of ~6–9 TgCH4 yr-1 during this event. Stable isotope data suggest that biogenic sources are the cause of this emission increase. We find a simultaneous expansion of wetland area, driven by the excess precipitation over the Tropical continents during the La Niña. Two process-based wetland models predict increases in wetland area consistent with observationally-constrained values, but substantially smaller per-area CH4 emissions, highlighting the need for improvements in such models. Overall, tropical wetland emissions during the strong La Niña were at least by 5% larger than the long-term mean.

Authors:
 [1];  [1];  [2];  [3];  [4];  [3];  [5];  [3];  [3];  [6];  [7];  [8];  [9];  [10];  [11];  [12];  [13]
  1. Inst. for Marine and Atmospheric Research Utrecht (IMAU), Utrecht (Netherlands); SRON Netherlands Inst. for Space Research, Utrecht (Netherlands)
  2. Inst. for Marine and Atmospheric Research Utrecht (IMAU), Utrecht (Netherlands); SRON Netherlands Inst. for Space Research, Utrecht (Netherlands); Wageningen Univ. & Research (Netherlands). Dept. of Meteorology and Air Quality (MAQ)
  3. SRON Netherlands Inst. for Space Research, Utrecht (Netherlands)
  4. Lund Univ. (Sweden). Dept. of Physical Geography and Ecosystem Science
  5. NOAA Earth System Research Lab., Boulder, CO (United States)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Chinese Academy of Sciences (CAS), Beijing (China). CAS Key Lab. of Regional Climate-Environment for Temperate East Asia. Inst. of Atmospheric Physics
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division
  8. Montana State Univ., Bozeman, MT (United States). Inst. on Ecosystems. Dept. of Ecology
  9. Swiss Federal Inst. for Forest, Snow and Landscape Research (WSL), Birmensdorf (Switzlerland)
  10. City College of New York, NY (United States)
  11. Inst. of Arctic and Alpine Research, Boulder, CO (United States)
  12. Lab. for Sciences of Climate and Environment (LSCE), Gif-sur-Yvette (France)
  13. Inst. for Marine and Atmospheric Research Utrecht (IMAU), Utrecht (Netherlands)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE; Netherlands Organization for Scientific Research (NWO)
OSTI Identifier:
1476481
Grant/Contract Number:  
AC02-05CH11231; ALW-GO-AO/11-24
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; atmospheric chemistry; carbon cycle; projection and prediction

Citation Formats

Pandey, Sudhanshu, Houweling, Sander, Krol, Maarten, Aben, Ilse, Monteil, Guillaume, Nechita-Banda, Narcisa, Dlugokencky, Edward J., Detmers, Rob, Hasekamp, Otto, Xu, Xiyan, Riley, William J., Poulter, Benjamin, Zhang, Zhen, McDonald, Kyle C., White, James W. C., Bousquet, Philippe, and Röckmann, Thomas. Enhanced methane emissions from tropical wetlands during the 2011 La Niña. United States: N. p., 2017. Web. doi:10.1038/srep45759.
Pandey, Sudhanshu, Houweling, Sander, Krol, Maarten, Aben, Ilse, Monteil, Guillaume, Nechita-Banda, Narcisa, Dlugokencky, Edward J., Detmers, Rob, Hasekamp, Otto, Xu, Xiyan, Riley, William J., Poulter, Benjamin, Zhang, Zhen, McDonald, Kyle C., White, James W. C., Bousquet, Philippe, & Röckmann, Thomas. Enhanced methane emissions from tropical wetlands during the 2011 La Niña. United States. doi:10.1038/srep45759.
Pandey, Sudhanshu, Houweling, Sander, Krol, Maarten, Aben, Ilse, Monteil, Guillaume, Nechita-Banda, Narcisa, Dlugokencky, Edward J., Detmers, Rob, Hasekamp, Otto, Xu, Xiyan, Riley, William J., Poulter, Benjamin, Zhang, Zhen, McDonald, Kyle C., White, James W. C., Bousquet, Philippe, and Röckmann, Thomas. Mon . "Enhanced methane emissions from tropical wetlands during the 2011 La Niña". United States. doi:10.1038/srep45759. https://www.osti.gov/servlets/purl/1476481.
@article{osti_1476481,
title = {Enhanced methane emissions from tropical wetlands during the 2011 La Niña},
author = {Pandey, Sudhanshu and Houweling, Sander and Krol, Maarten and Aben, Ilse and Monteil, Guillaume and Nechita-Banda, Narcisa and Dlugokencky, Edward J. and Detmers, Rob and Hasekamp, Otto and Xu, Xiyan and Riley, William J. and Poulter, Benjamin and Zhang, Zhen and McDonald, Kyle C. and White, James W. C. and Bousquet, Philippe and Röckmann, Thomas},
abstractNote = {Year-to-year variations in the atmospheric methane (CH4) growth rate show significant correlation with climatic drivers. The second half of 2010 and the first half of 2011 experienced the strongest La Niña since the early 1980s, when global surface networks started monitoring atmospheric CH4 mole fractions. We use these surface measurements, retrievals of column-averaged CH4 mole fractions from GOSAT, new wetland inundation estimates, and atmospheric δ13C-CH4 measurements to estimate the impact of this strong La Niña on the global atmospheric CH4 budget. By performing atmospheric inversions, we find evidence of an increase in tropical CH4 emissions of ~6–9 TgCH4 yr-1 during this event. Stable isotope data suggest that biogenic sources are the cause of this emission increase. We find a simultaneous expansion of wetland area, driven by the excess precipitation over the Tropical continents during the La Niña. Two process-based wetland models predict increases in wetland area consistent with observationally-constrained values, but substantially smaller per-area CH4 emissions, highlighting the need for improvements in such models. Overall, tropical wetland emissions during the strong La Niña were at least by 5% larger than the long-term mean.},
doi = {10.1038/srep45759},
journal = {Scientific Reports},
number = ,
volume = 7,
place = {United States},
year = {2017},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The El Niño-Southern Oscillation and wetland methane interannual variability: WETLAND METHANE EMISSIONS AND ENSO
journal, April 2011

  • Hodson, E. L.; Poulter, B.; Zimmermann, N. E.
  • Geophysical Research Letters, Vol. 38, Issue 8
  • DOI: 10.1029/2011GL046861

14CH4 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources
journal, April 2009


Enigma of the recent methane budget
journal, August 2011


The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection
journal, August 2006


Global CO 2 fluxes estimated from GOSAT retrievals of total column CO 2
journal, January 2013


Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources
journal, August 2011

  • Kai, Fuu Ming; Tyler, Stanley C.; Randerson, James T.
  • Nature, Vol. 476, Issue 7359
  • DOI: 10.1038/nature10259

Slowing down of the global accumulation of atmospheric methane during the 1980s
journal, July 1992

  • Steele, L. P.; Dlugokencky, E. J.; Lang, P. M.
  • Nature, Vol. 358, Issue 6384
  • DOI: 10.1038/358313a0

Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air
journal, August 2011

  • Aydin, Murat; Verhulst, Kristal R.; Saltzman, Eric S.
  • Nature, Vol. 476, Issue 7359
  • DOI: 10.1038/nature10352

Observational constraints on recent increases in the atmospheric CH 4 burden
journal, January 2009

  • Dlugokencky, E. J.; Bruhwiler, L.; White, J. W. C.
  • Geophysical Research Letters, Vol. 36, Issue 18
  • DOI: 10.1029/2009GL039780

Inferring CO 2 sources and sinks from satellite observations: Method and application to TOVS data
journal, January 2005

  • Chevallier, F.; Fisher, M.; Peylin, P.
  • Journal of Geophysical Research, Vol. 110, Issue D24
  • DOI: 10.1029/2005JD006390

Three decades of global methane sources and sinks
journal, September 2013

  • Kirschke, Stefanie; Bousquet, Philippe; Ciais, Philippe
  • Nature Geoscience, Vol. 6, Issue 10
  • DOI: 10.1038/ngeo1955

Technical Note: Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion
journal, January 2008

  • Meirink, J. F.; Bergamaschi, P.; Krol, M. C.
  • Atmospheric Chemistry and Physics Discussions, Vol. 8, Issue 3
  • DOI: 10.5194/acpd-8-12023-2008

Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties
journal, January 2016

  • Zhang, Zhen; Zimmermann, Niklaus E.; Kaplan, Jed O.
  • Biogeosciences, Vol. 13, Issue 5
  • DOI: 10.5194/bg-13-1387-2016

An inverse modeling approach to investigate the global atmospheric methane cycle
journal, March 1997

  • Hein, Ralf; Crutzen, Paul J.; Heimann, Martin
  • Global Biogeochemical Cycles, Vol. 11, Issue 1
  • DOI: 10.1029/96GB03043

Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms: CH
journal, May 2012

  • Schepers, D.; Guerlet, S.; Butz, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D10
  • DOI: 10.1029/2012JD017549

Shifting Gear, Quickly
journal, April 2009


The two-way nested global chemistry-transport zoom model TM5: algorithm and applications
journal, January 2005

  • Krol, M.; Houweling, S.; Bregman, B.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 2
  • DOI: 10.5194/acp-5-417-2005

The description and validation of the computationally Efficient CH 4 –CO–OH (ECCOHv1.01) chemistry module for 3-D model applications
journal, January 2016

  • Elshorbany, Yasin F.; Duncan, Bryan N.; Strode, Sarah A.
  • Geoscientific Model Development, Vol. 9, Issue 2
  • DOI: 10.5194/gmd-9-799-2016

Factors controlling large scale variations in methane emissions from wetlands: METHANE EMISSIONS FROM WETLANDS
journal, April 2003

  • Christensen, Torben R.; Ekberg, Anna; Ström, Lena
  • Geophysical Research Letters, Vol. 30, Issue 7
  • DOI: 10.1029/2002GL016848

Inverse modeling of methane sources and sinks using the adjoint of a global transport model
journal, November 1999

  • Houweling, Sander; Kaminski, Thomas; Dentener, Frank
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D21
  • DOI: 10.1029/1999JD900428

Contribution of anthropogenic and natural sources to atmospheric methane variability
journal, September 2006


CH 4 retrievals from space-based solar backscatter measurements: Performance evaluation against simulated aerosol and cirrus loaded scenes : EVALUATION OF CH
journal, December 2010

  • Butz, A.; Hasekamp, O. P.; Frankenberg, C.
  • Journal of Geophysical Research: Atmospheres, Vol. 115, Issue D24
  • DOI: 10.1029/2010JD014514

The 2009–2010 step in atmospheric CO 2 interhemispheric difference
journal, January 2016


Anomalous carbon uptake in Australia as seen by GOSAT
journal, October 2015

  • Detmers, R. G.; Hasekamp, O.; Aben, I.
  • Geophysical Research Letters, Vol. 42, Issue 19
  • DOI: 10.1002/2015GL065161

Development and Evaluation of a Multi-Year Fractional Surface Water Data Set Derived from Active/Passive Microwave Remote Sensing Data
journal, December 2015

  • Schroeder, Ronny; McDonald, Kyle; Chapman, Bruce
  • Remote Sensing, Vol. 7, Issue 12
  • DOI: 10.3390/rs71215843

Three-dimensional climatological distribution of tropospheric OH: Update and evaluation
journal, April 2000

  • Spivakovsky, C. M.; Logan, J. A.; Montzka, S. A.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D7
  • DOI: 10.1029/1999JD901006

Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations
journal, January 2015

  • Locatelli, R.; Bousquet, P.; Saunois, M.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 17
  • DOI: 10.5194/acp-15-9765-2015

High Precision Long-Term Monitoring of Radiatively Active and Related Trace Gases at Surface Sites and from Aircraft in the Southern Hemisphere Atmosphere
journal, January 1999


Methane on the Rise--Again
journal, January 2014


High-precision, automated stable isotope analysis of atmospheric methane and carbon dioxide using continuous-flow isotope-ratio mass spectrometry
journal, January 2005

  • Fisher, Rebecca; Lowry, David; Wilkin, Owen
  • Rapid Communications in Mass Spectrometry, Vol. 20, Issue 2
  • DOI: 10.1002/rcm.2300

Atmospheric methane evolution the last 40 years
journal, January 2016

  • Dalsøren, Stig B.; Myhre, Cathrine L.; Myhre, Gunnar
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 5
  • DOI: 10.5194/acp-16-3099-2016

Interpreting methane variations in the past two decades using measurements of CH 4 mixing ratio and isotopic composition
journal, January 2011

  • Monteil, G.; Houweling, S.; Dlugockenky, E. J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 17
  • DOI: 10.5194/acp-11-9141-2011

Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data
journal, January 2010


The impact of meteorology on the interannual growth rate of atmospheric methane: INTERANNUAL VARIABILITY OF METHANE
journal, October 2002

  • Warwick, N. J.; Bekki, S.; Law, K. S.
  • Geophysical Research Letters, Vol. 29, Issue 20
  • DOI: 10.1029/2002GL015282

Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle
journal, May 2014

  • Poulter, Benjamin; Frank, David; Ciais, Philippe
  • Nature, Vol. 509, Issue 7502
  • DOI: 10.1038/nature13376

Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset: UPDATED HIGH-RESOLUTION GRIDS OF MONTHLY CLIMATIC OBSERVATIONS
journal, May 2013

  • Harris, I.; Jones, P. D.; Osborn, T. J.
  • International Journal of Climatology, Vol. 34, Issue 3
  • DOI: 10.1002/joc.3711

Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of an extreme air pollution episode in the Moscow region
journal, January 2011

  • Konovalov, I. B.; Beekmann, M.; Kuznetsova, I. N.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 19
  • DOI: 10.5194/acp-11-10031-2011

Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990
journal, January 1992

  • Prinn, R.; Cunnold, D.; Simmonds, P.
  • Journal of Geophysical Research, Vol. 97, Issue D2
  • DOI: 10.1029/91JD02755

A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands
journal, January 2016


Unexpected Changes to the Global Methane Budget over the Past 2000 Years
journal, September 2005


Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results
journal, January 2009


El Niño, the 2006 Indonesian peat fires, and the distribution of atmospheric methane
journal, September 2013

  • Worden, John; Jiang, Zhe; Jones, Dylan B. A.
  • Geophysical Research Letters, Vol. 40, Issue 18
  • DOI: 10.1002/grl.50937

Interannual variability in global biomass burning emissions from 1997 to 2004
journal, January 2006

  • van der Werf, G. R.; Randerson, J. T.; Giglio, L.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 11
  • DOI: 10.5194/acp-6-3423-2006

Global atmospheric methane: budget, changes and dangers
journal, May 2011

  • Dlugokencky, Edward J.; Nisbet, Euan G.; Fisher, Rebecca
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 369, Issue 1943
  • DOI: 10.1098/rsta.2010.0341

    Works referencing / citing this record:

    ENSO‐Influenced Drought Drives Methane Flux Dynamics in a Tropical Wet Forest Soil
    journal, July 2019

    • Aronson, E. L.; Dierick, D.; Botthoff, J. K.
    • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 7
    • DOI: 10.1029/2018jg004832

    Solar UV radiation in a changing world: roles of cryosphere–land–water–atmosphere interfaces in global biogeochemical cycles
    journal, January 2019

    • Sulzberger, B.; Austin, A. T.; Cory, R. M.
    • Photochemical & Photobiological Sciences, Vol. 18, Issue 3
    • DOI: 10.1039/c8pp90063a

    ENSO‐Influenced Drought Drives Methane Flux Dynamics in a Tropical Wet Forest Soil
    journal, July 2019

    • Aronson, E. L.; Dierick, D.; Botthoff, J. K.
    • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 7
    • DOI: 10.1029/2018jg004832

    Solar UV radiation in a changing world: roles of cryosphere–land–water–atmosphere interfaces in global biogeochemical cycles
    journal, January 2019

    • Sulzberger, B.; Austin, A. T.; Cory, R. M.
    • Photochemical & Photobiological Sciences, Vol. 18, Issue 3
    • DOI: 10.1039/c8pp90063a