skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Observation of Nonlocal Heat Flux Using Thomson Scattering

Abstract

Here, nonlocal heat flux was measured in laser-produced coronal plasmas using a novel Thomson scattering technique. The measured heat flux was smaller than the classical values inferred from the measured plasma conditions in regions with large temperature gradients and agreed with classical values for weak gradients. Vlasov–Fokker–Planck simulations self consistently calculated the electron distribution functions used to reproduce the measured Thomson scattering spectra and to determine the heat flux. Multigroup nonlocal simulations overestimated the measured heat flux.

Authors:
 [1];  [2];  [3];  [4];  [4];  [4];  [5]
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics and Dept. of Mechanical Engineering
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Univ. of Alberta, Edmonton, AB (Canada). Dept. of Physics
  4. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  5. Univ. of Rochester, NY (United States). Lab. for Laser Energetics and Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); New York State Energy Research and Development Authority (NYSERDA)
OSTI Identifier:
1476314
Alternate Identifier(s):
OSTI ID: 1471267; OSTI ID: 1497288
Report Number(s):
2018-71; 1435; LLNL-JRNL-750862
Journal ID: ISSN 0031-9007; PRLTAO; 2018-71, 2394, 1436
Grant/Contract Number:  
NA0001944; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 121; Journal Issue: 12; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 79 ASTRONOMY AND ASTROPHYSICS; classical transport; plasma transport; Fokker-Planck and Vlasov model; light scattering

Citation Formats

Henchen, R. J., Sherlock, M., Rozmus, W., Katz, J., Cao, D., Palastro, J. P., and Froula, D. H. Observation of Nonlocal Heat Flux Using Thomson Scattering. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.121.125001.
Henchen, R. J., Sherlock, M., Rozmus, W., Katz, J., Cao, D., Palastro, J. P., & Froula, D. H. Observation of Nonlocal Heat Flux Using Thomson Scattering. United States. doi:10.1103/PhysRevLett.121.125001.
Henchen, R. J., Sherlock, M., Rozmus, W., Katz, J., Cao, D., Palastro, J. P., and Froula, D. H. Tue . "Observation of Nonlocal Heat Flux Using Thomson Scattering". United States. doi:10.1103/PhysRevLett.121.125001. https://www.osti.gov/servlets/purl/1476314.
@article{osti_1476314,
title = {Observation of Nonlocal Heat Flux Using Thomson Scattering},
author = {Henchen, R. J. and Sherlock, M. and Rozmus, W. and Katz, J. and Cao, D. and Palastro, J. P. and Froula, D. H.},
abstractNote = {Here, nonlocal heat flux was measured in laser-produced coronal plasmas using a novel Thomson scattering technique. The measured heat flux was smaller than the classical values inferred from the measured plasma conditions in regions with large temperature gradients and agreed with classical values for weak gradients. Vlasov–Fokker–Planck simulations self consistently calculated the electron distribution functions used to reproduce the measured Thomson scattering spectra and to determine the heat flux. Multigroup nonlocal simulations overestimated the measured heat flux.},
doi = {10.1103/PhysRevLett.121.125001},
journal = {Physical Review Letters},
number = 12,
volume = 121,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Calculated Thomson-scattering features (orange, right axis) from electron plasma waves (Eq. 1) are shown (vφ = ω/k) using a Maxwellian (solid blue, left axis) electron distribution function and the non-Maxwellian (dashed blue) distribution that accounts for classical SH heat flux (λei/LT = 2.2× 10−3, q/qFS = 3%).more » (b) For a fixed normalized phase velocity, the ratio (R) of the peak scattered power of the up- and downshifted features are shown for calculations that use classical SH (dashed curve, top axis) and nonlocal (solid curve, bottom axis) distribution functions over a range of heat flux normalized to the free-streaming flux, qFS = neTevte.« less

Save / Share:

Works referenced in this record:

Anomalous Absorption of High-Energy Green Laser Light in High- Z Plasmas
journal, May 2002


FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes
journal, November 2000

  • Fryxell, B.; Olson, K.; Ricker, P.
  • The Astrophysical Journal Supplement Series, Vol. 131, Issue 1
  • DOI: 10.1086/317361

Characteristics of lateral and axial transport in laser irradiations of layered-disk targets at 1.06 and 0.35 μm wavelengths
journal, January 1984

  • Mead, W. C.; Campbell, E. Michael; Kruer, W. L.
  • Physics of Fluids, Vol. 27, Issue 5
  • DOI: 10.1063/1.864746

Thomson-scattering measurements of high electron temperature hohlraum plasmas for laser-plasma interaction studies
journal, May 2006

  • Froula, D. H.; Ross, J. S.; Divol, L.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2203232

A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion
journal, August 2017

  • Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.
  • Physics of Plasmas, Vol. 24, Issue 8
  • DOI: 10.1063/1.4986095

Indications of Strongly Flux-Limited Electron Thermal Conduction in Laser-Target Experiments
journal, March 1975


SIMULATING MAGNETOHYDRODYNAMICAL FLOW WITH CONSTRAINED TRANSPORT AND ADAPTIVE MESH REFINEMENT: ALGORITHMS AND TESTS OF THE AstroBEAR CODE
journal, May 2009

  • Cunningham, Andrew J.; Frank, Adam; Varnière, Peggy
  • The Astrophysical Journal Supplement Series, Vol. 182, Issue 2
  • DOI: 10.1088/0067-0049/182/2/519

Effect of Nonlocal Transport on Heat-Wave Propagation
journal, May 2004


A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
journal, January 2000

  • Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
  • Physics of Plasmas, Vol. 7, Issue 10
  • DOI: 10.1063/1.1289512

Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution
journal, January 2006

  • Goncharov, V. N.; Gotchev, O. V.; Vianello, E.
  • Physics of Plasmas, Vol. 13, Issue 1
  • DOI: 10.1063/1.2162803

Initial performance results of the OMEGA laser system
journal, January 1997


Thomson Scattering from High- Z Laser-Produced Plasmas
journal, January 1999


Elecron Energy Transport in Steep Temperature Gradients in Laser-Produced Plasmas
journal, January 1981


Implementation of a high energy 4ω probe beam on the Omega laser
journal, October 2004

  • Mackinnon, A. J.; Shiromizu, S.; Antonini, G.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1789247

Ion-acoustic turbulence and anomalous transport
journal, July 1988


Mass-Ablation Rates in a Spherical Laser-Produced Plasma
journal, October 1983


The variation of mass ablation rate with laser wavelength and target geometry
journal, June 1982


Electron Heat Transport down Steep Temperature Gradients
journal, December 1982


Laser Absorption and Heat Transport by Non-Maxwell-Boltzmann Electron Distributions
journal, June 1983


A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA
journal, October 2012

  • Katz, J.; Boni, R.; Sorce, C.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4733551

Electron energy transport in ion waves and its relevance to laser-produced plasmas
journal, January 1983


Measuring Implosion Dynamics through ρ R Evolution in Inertial-Confinement Fusion Experiments
journal, March 2003


Transport Phenomena in a Completely Ionized Gas
journal, March 1953


Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas
journal, January 2016

  • Rozmus, W.; Chapman, T.; Brantov, A.
  • Physics of Plasmas, Vol. 23, Issue 1
  • DOI: 10.1063/1.4939603

Crash: a Block-Adaptive-Mesh code for Radiative Shock Hydrodynamics—Implementation and Verification
journal, May 2011

  • van der Holst, B.; Tóth, G.; Sokolov, I. V.
  • The Astrophysical Journal Supplement Series, Vol. 194, Issue 2
  • DOI: 10.1088/0067-0049/194/2/23

Measurements of the Conduction-Zone Length and Mass Ablation Rate in Cryogenic Direct-Drive Implosions on OMEGA
journal, April 2015


Three‐dimensional simulations of Nova high growth factor capsule implosion experiments
journal, May 1996

  • Marinak, M. M.; Tipton, R. E.; Landen, O. L.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872004

Thermal transport in the presence of steep gradients and strong ambipolar field
journal, June 1993


Observation of Relativistic Effects in Collective Thomson Scattering
journal, March 2010


Nonlocal Electron Transport in a Plasma
journal, December 1995


Nonlocal Heat Transport Due to Steep Temperature Gradients
journal, October 1983


Nonlocal Electron Heat Transport by Not Quite Maxwell-Boltzmann Distributions
journal, October 1986


Thomson scattering measurements of heat flow in a laser-produced plasma
journal, March 2004

  • Hawreliak, J.; Chambers, D. M.; Glenzer, S. H.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 37, Issue 7
  • DOI: 10.1088/0953-4075/37/7/013

Measurement of Thermal Conductivity in a Laser-Heated Plasma
journal, August 1975


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.