skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lithium metal stripping beneath the solid electrolyte interphase

Abstract

Lithium stripping is a crucial process coupled with lithium deposition during the cycling of Li metal batteries. Lithium deposition has been widely studied, whereas stripping as a subsurface process has rarely been investigated. Here we reveal the fundamental mechanism of stripping on lithium by visualizing the interface between stripped lithium and the solid electrolyte interphase (SEI). We observed nanovoids formed between lithium and the SEI layer after stripping, which are attributed to the accumulation of lithium metal vacancies. High-rate dissolution of lithium causes vigorous growth and subsequent aggregation of voids, followed by the collapse of the SEI layer, i.e., pitting. We systematically measured the lithium polarization behavior during stripping and find that the lithium cation diffusion through the SEI layer is the rate-determining step. Nonuniform sites on typical lithium surfaces, such as grain boundaries and slip lines, greatly accelerated the local dissolution of lithium. As a result, the deeper understanding of this buried interface stripping process provides beneficial clues for future lithium anode and electrolyte design.

Authors:
 [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [2];  [3]
  1. Stanford Univ., Stanford, CA (United States)
  2. Univ. of Electronic Science and Technology of China, Sichuan (People's Republic of China)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1476112
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 115; Journal Issue: 34; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium metal; stripping; solid electrolyte interphase; pitting; battery

Citation Formats

Shi, Feifei, Pei, Allen, Boyle, David Thomas, Xie, Jin, Yu, Xiaoyun, Zhang, Xiaokun, and Cui, Yi. Lithium metal stripping beneath the solid electrolyte interphase. United States: N. p., 2018. Web. doi:10.1073/pnas.1806878115.
Shi, Feifei, Pei, Allen, Boyle, David Thomas, Xie, Jin, Yu, Xiaoyun, Zhang, Xiaokun, & Cui, Yi. Lithium metal stripping beneath the solid electrolyte interphase. United States. doi:10.1073/pnas.1806878115.
Shi, Feifei, Pei, Allen, Boyle, David Thomas, Xie, Jin, Yu, Xiaoyun, Zhang, Xiaokun, and Cui, Yi. Mon . "Lithium metal stripping beneath the solid electrolyte interphase". United States. doi:10.1073/pnas.1806878115. https://www.osti.gov/servlets/purl/1476112.
@article{osti_1476112,
title = {Lithium metal stripping beneath the solid electrolyte interphase},
author = {Shi, Feifei and Pei, Allen and Boyle, David Thomas and Xie, Jin and Yu, Xiaoyun and Zhang, Xiaokun and Cui, Yi},
abstractNote = {Lithium stripping is a crucial process coupled with lithium deposition during the cycling of Li metal batteries. Lithium deposition has been widely studied, whereas stripping as a subsurface process has rarely been investigated. Here we reveal the fundamental mechanism of stripping on lithium by visualizing the interface between stripped lithium and the solid electrolyte interphase (SEI). We observed nanovoids formed between lithium and the SEI layer after stripping, which are attributed to the accumulation of lithium metal vacancies. High-rate dissolution of lithium causes vigorous growth and subsequent aggregation of voids, followed by the collapse of the SEI layer, i.e., pitting. We systematically measured the lithium polarization behavior during stripping and find that the lithium cation diffusion through the SEI layer is the rate-determining step. Nonuniform sites on typical lithium surfaces, such as grain boundaries and slip lines, greatly accelerated the local dissolution of lithium. As a result, the deeper understanding of this buried interface stripping process provides beneficial clues for future lithium anode and electrolyte design.},
doi = {10.1073/pnas.1806878115},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 34,
volume = 115,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Chemistry of Electrolyte Reduction on Silicon Electrodes Revealed by in Situ ATR-FTIR Spectroscopy
journal, June 2017

  • Shi, Feifei; Ross, Philip N.; Somorjai, Gabor A.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 27
  • DOI: 10.1021/acs.jpcc.7b04132

A Reversible and Higher-Rate Li-O2 Battery
journal, July 2012


Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
journal, January 2015

  • Bieker, Georg; Winter, Martin; Bieker, Peter
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 14
  • DOI: 10.1039/C4CP05865H

Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase
journal, September 2012

  • Shi, Siqi; Lu, Peng; Liu, Zhongyi
  • Journal of the American Chemical Society, Vol. 134, Issue 37
  • DOI: 10.1021/ja305366r

Lithium metal stripping/plating mechanisms studies: A metallurgical approach
journal, October 2006


Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes
journal, November 2013

  • Harry, Katherine J.; Hallinan, Daniel T.; Parkinson, Dilworth Y.
  • Nature Materials, Vol. 13, Issue 1
  • DOI: 10.1038/NMAT3793

A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy
journal, February 2015

  • Shi, Feifei; Ross, Philip N.; Zhao, Hui
  • Journal of the American Chemical Society, Vol. 137, Issue 9
  • DOI: 10.1021/ja5128456

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Electrochemical Deposition and Stripping Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane
journal, January 2015

  • Harry, Katherine J.; Liao, Xunxun; Parkinson, Dilworth Y.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0321514jes

A Point Defect Model for Anodic Passive Films
journal, January 1981

  • Chao, C. Y.
  • Journal of The Electrochemical Society, Vol. 128, Issue 6
  • DOI: 10.1149/1.2127591

Anode-Free Rechargeable Lithium Metal Batteries
journal, August 2016

  • Qian, Jiangfeng; Adams, Brian D.; Zheng, Jianming
  • Advanced Functional Materials, Vol. 26, Issue 39
  • DOI: 10.1002/adfm.201602353

Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal
journal, January 2017


Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer
journal, February 2016

  • Zheng, Jianming; Yan, Pengfei; Mei, Donghai
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502151

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries
journal, January 2000

  • Aurbach, D.; Zinigrad, E.; Teller, H.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393349

Attempts to Improve the Behavior of Li Electrodes in Rechargeable Lithium Batteries
journal, January 2002

  • Aurbach, D.; Zinigrad, E.; Teller, H.
  • Journal of The Electrochemical Society, Vol. 149, Issue 10
  • DOI: 10.1149/1.1502684

Strong texturing of lithium metal in batteries
journal, October 2017

  • Shi, Feifei; Pei, Allen; Vailionis, Arturas
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 46
  • DOI: 10.1073/pnas.1708224114

Aprotic and Aqueous Li–O2 Batteries
journal, April 2014

  • Lu, Jun; Li, Li; Park, Jin-Bum
  • Chemical Reviews, Vol. 114, Issue 11, p. 5611-5640
  • DOI: 10.1021/cr400573b

Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy
journal, December 2000

  • Cohen, Yaron S.; Cohen, Yair; Aurbach, Doron
  • The Journal of Physical Chemistry B, Vol. 104, Issue 51
  • DOI: 10.1021/jp002526b

Promises and challenges of nanomaterials for lithium-based rechargeable batteries
journal, June 2016


Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

The Point Defect Model for the Passive State
journal, January 1992

  • Macdonald, Digby D.
  • Journal of The Electrochemical Society, Vol. 139, Issue 12
  • DOI: 10.1149/1.2069096

Isotope Inter-Diffusion and Self-Diffusion in Solid Lithium Metal
journal, January 1970


Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy
journal, October 2016


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability
journal, August 2017

  • Zhao, Jie; Liao, Lei; Shi, Feifei
  • Journal of the American Chemical Society, Vol. 139, Issue 33
  • DOI: 10.1021/jacs.7b05251

Reliable reference electrodes for lithium-ion batteries
journal, June 2013


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

    Works referencing / citing this record:

    Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications
    journal, January 2019

    • Hwang, Jang-Yeon; Park, Seong-Jin; Yoon, Chong S.
    • Energy & Environmental Science, Vol. 12, Issue 7
    • DOI: 10.1039/c9ee00716d

    Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications
    journal, January 2019

    • Hwang, Jang-Yeon; Park, Seong-Jin; Yoon, Chong S.
    • Energy & Environmental Science, Vol. 12, Issue 7
    • DOI: 10.1039/c9ee00716d