DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Pore Connectivity on Li Dendrite Propagation within LLZO Electrolytes Observed with Synchrotron X-ray Tomography

Abstract

Li7La3Zr2O12 (LLZO) is a garnet type material that demonstrates promising characteristics for all solid-state battery applications due to its high Li-ion conductivity and its compatibility with Li metal. The primary limitation of LLZO is the propensity for short-circuiting at low current densities. Microstructure features such as grain boundaries, pore character, and density all contribute to this shorting phenomenon. Toward the goal of understanding structure-processing relationships for practical design of solid electrolytes, the present study tracks structural transformations in solid electrolytes processed at three different temperatures (1000, 1050 and 1150 °C) using synchrotron x-ray tomography. A sub volume of 300 μm3 captures the heterogeneity of the solid electrolyte microstructure while minimizing the computational intensity associated with 3D reconstructions. While the porosity decreases with increasing temperature, the underlying connectivity of the pore region increases. In conclusion, solid electrolytes with interconnected pores short circuit at lower critical current densities than samples with less connected pores.

Authors:
 [1];  [2];  [3]; ORCiD logo [4]
  1. Vanderbilt Univ., Nashville, TN (United States). Interdisciplinary Dept. of Material Science; Vanderbilt Univ., Nashville, TN (United States). Dept. of Mechanical Engineering
  2. Vanderbilt Univ., Nashville, TN (United States). Dept. of Mechanical Engineering
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS), X-ray Science Division
  4. Vanderbilt Univ., Nashville, TN (United States). Interdisciplinary Dept. of Material Science; Vanderbilt Univ., Nashville, TN (United States). Dept. of Mechanical Engineering; Vanderbilt Univ., Nashville, TN (United States). Dept. of Chemical and Biomolecular Engineering
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1475558
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 3; Journal Issue: 4; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Shen, Fengyu, Dixit, Marm B., Xiao, Xianghui, and Hatzell, Kelsey B. Effect of Pore Connectivity on Li Dendrite Propagation within LLZO Electrolytes Observed with Synchrotron X-ray Tomography. United States: N. p., 2018. Web. doi:10.1021/acsenergylett.8b00249.
Shen, Fengyu, Dixit, Marm B., Xiao, Xianghui, & Hatzell, Kelsey B. Effect of Pore Connectivity on Li Dendrite Propagation within LLZO Electrolytes Observed with Synchrotron X-ray Tomography. United States. https://doi.org/10.1021/acsenergylett.8b00249
Shen, Fengyu, Dixit, Marm B., Xiao, Xianghui, and Hatzell, Kelsey B. Fri . "Effect of Pore Connectivity on Li Dendrite Propagation within LLZO Electrolytes Observed with Synchrotron X-ray Tomography". United States. https://doi.org/10.1021/acsenergylett.8b00249. https://www.osti.gov/servlets/purl/1475558.
@article{osti_1475558,
title = {Effect of Pore Connectivity on Li Dendrite Propagation within LLZO Electrolytes Observed with Synchrotron X-ray Tomography},
author = {Shen, Fengyu and Dixit, Marm B. and Xiao, Xianghui and Hatzell, Kelsey B.},
abstractNote = {Li7La3Zr2O12 (LLZO) is a garnet type material that demonstrates promising characteristics for all solid-state battery applications due to its high Li-ion conductivity and its compatibility with Li metal. The primary limitation of LLZO is the propensity for short-circuiting at low current densities. Microstructure features such as grain boundaries, pore character, and density all contribute to this shorting phenomenon. Toward the goal of understanding structure-processing relationships for practical design of solid electrolytes, the present study tracks structural transformations in solid electrolytes processed at three different temperatures (1000, 1050 and 1150 °C) using synchrotron x-ray tomography. A sub volume of 300 μm3 captures the heterogeneity of the solid electrolyte microstructure while minimizing the computational intensity associated with 3D reconstructions. While the porosity decreases with increasing temperature, the underlying connectivity of the pore region increases. In conclusion, solid electrolytes with interconnected pores short circuit at lower critical current densities than samples with less connected pores.},
doi = {10.1021/acsenergylett.8b00249},
journal = {ACS Energy Letters},
number = 4,
volume = 3,
place = {United States},
year = {Fri Mar 30 00:00:00 EDT 2018},
month = {Fri Mar 30 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 208 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte
journal, August 2015


Elastic Properties of the Solid Electrolyte Li 7 La 3 Zr 2 O 12 (LLZO)
journal, December 2015


Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte
journal, January 2017


Interfacial Stability of Li Metal–Solid Electrolyte Elucidated via in Situ Electron Microscopy
journal, October 2016


Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li 7 La 3 Zr 2 O 12 solid-state electrolyte
journal, January 2017

  • Sharafi, Asma; Haslam, Catherine G.; Kerns, Robert D.
  • J. Mater. Chem. A, Vol. 5, Issue 40
  • DOI: 10.1039/C7TA06790A

Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density
journal, January 2016


Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
journal, January 2014

  • Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana
  • Chemical Society Reviews, Vol. 43, Issue 13
  • DOI: 10.1039/c4cs00020j

Dendrite Growth in Lithium/Polymer Systems
journal, January 2003

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 150, Issue 10
  • DOI: 10.1149/1.1606686

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Insights into capacity loss mechanisms of all-solid-state Li-ion batteries with Al anodes
journal, January 2014

  • Leite, Marina S.; Ruzmetov, Dmitry; Li, Zhipeng
  • J. Mater. Chem. A, Vol. 2, Issue 48
  • DOI: 10.1039/C4TA03716B

Interface Limited Lithium Transport in Solid-State Batteries
journal, December 2013

  • Santhanagopalan, Dhamodaran; Qian, Danna; McGilvray, Thomas
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 2
  • DOI: 10.1021/jz402467x

Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes
journal, July 2017

  • Porz, Lukas; Swamy, Tushar; Sheldon, Brian W.
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201701003

Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes
journal, January 2015

  • Cheng, Lei; Chen, Wei; Kunz, Martin
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 3
  • DOI: 10.1021/am508111r

Electrochemical Stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against Metallic Lithium
journal, May 2016


Ta-Doped Li 7 La 3 Zr 2 O 12 for Water-Stable Lithium Electrode of Lithium-Air Batteries
journal, January 2014

  • Ishiguro, K.; Nemori, H.; Sunahiro, S.
  • Journal of The Electrochemical Society, Vol. 161, Issue 5
  • DOI: 10.1149/2.013405jes

Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal
journal, September 2014


Microstructure and Li-Ion Conductivity of Hot-Pressed Cubic Li 7 La 3 Zr 2 O 12
journal, January 2015

  • David, Isabel N.; Thompson, Travis; Wolfenstine, Jeff
  • Journal of the American Ceramic Society, Vol. 98, Issue 4
  • DOI: 10.1111/jace.13455

Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal
journal, January 2017

  • Aguesse, Frederic; Manalastas, William; Buannic, Lucienne
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 4
  • DOI: 10.1021/acsami.6b13925

Understanding inks for porous-electrode formation
journal, January 2017

  • Hatzell, Kelsey B.; Dixit, Marm B.; Berlinger, Sarah A.
  • J. Mater. Chem. A, Vol. 5, Issue 39
  • DOI: 10.1039/C7TA07255D

X-Ray Tomography for Lithium Ion Battery Research: A Practical Guide
journal, July 2017


Direct observation of active material interactions in flowable electrodes using X-ray tomography
journal, January 2017

  • Hatzell, Kelsey B.; Eller, Jens; Morelly, Samantha L.
  • Faraday Discussions, Vol. 199
  • DOI: 10.1039/C6FD00243A

X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92
journal, July 1993

  • Henke, B. L.; Gullikson, E. M.; Davis, J. C.
  • Atomic Data and Nuclear Data Tables, Vol. 54, Issue 2, p. 181-342
  • DOI: 10.1006/adnd.1993.1013

Li 7 La 3 Zr 2 O 12 Interface Modification for Li Dendrite Prevention
journal, April 2016

  • Tsai, Chih-Long; Roddatis, Vladimir; Chandran, C. Vinod
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 16
  • DOI: 10.1021/acsami.6b00831

Determining the uncertainty in microstructural parameters extracted from tomographic data
journal, January 2018

  • Pietsch, P.; Ebner, M.; Marone, F.
  • Sustainable Energy & Fuels, Vol. 2, Issue 3
  • DOI: 10.1039/C7SE00498B

Low-temperature densification of Al-doped Li 7 La 3 Zr 2 O 12 : a reliable and controllable synthesis of fast-ion conducting garnets
journal, January 2017

  • El-Shinawi, Hany; Paterson, Gary W.; MacLaren, Donald A.
  • Journal of Materials Chemistry A, Vol. 5, Issue 1
  • DOI: 10.1039/C6TA06961D

Ionic Conductivity and Air Stability of Al-Doped Li 7 La 3 Zr 2 O 12 Sintered in Alumina and Pt Crucibles
journal, February 2016

  • Xia, Wenhao; Xu, Biyi; Duan, Huanan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 8
  • DOI: 10.1021/acsami.5b12186

Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”
journal, January 2011

  • Buschmann, Henrik; Dölle, Janis; Berendts, Stefan
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 43
  • DOI: 10.1039/c1cp22108f

Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li 7 La 3 Zr 2 O 12 (LLZO)
journal, November 2017


Works referencing / citing this record:

Dopant‐Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal
journal, January 2019

  • Zhu, Yisi; Connell, Justin G.; Tepavcevic, Sanja
  • Advanced Energy Materials, Vol. 9, Issue 12
  • DOI: 10.1002/aenm.201803440

Composite Electrode Ink Formulation for All Solid-State Batteries
journal, January 2019

  • Shen, Fengyu; Dixit, Marm B.; Zaman, Wahid
  • Journal of The Electrochemical Society, Vol. 166, Issue 14
  • DOI: 10.1149/2.0141914jes

Probing into the origin of an electronic conductivity surge in a garnet solid-state electrolyte
journal, January 2019

  • Song, Yongli; Yang, Luyi; Tao, Lei
  • Journal of Materials Chemistry A, Vol. 7, Issue 40
  • DOI: 10.1039/c9ta10269h

Managing transport properties in composite electrodes/electrolytes for all-solid-state lithium-based batteries
journal, January 2019

  • Falco, Marisa; Ferrari, Stefania; Appetecchi, Giovanni Battista
  • Molecular Systems Design & Engineering, Vol. 4, Issue 4
  • DOI: 10.1039/c9me00050j

Oriented porous LLZO 3D structures obtained by freeze casting for battery applications
journal, January 2019

  • Shen, Hao; Yi, Eongyu; Amores, Marco
  • Journal of Materials Chemistry A, Vol. 7, Issue 36
  • DOI: 10.1039/c9ta06520b

Deconstructing electrode pore network to learn transport distortion
journal, December 2019

  • Mistry, Aashutosh; Mukherjee, Partha P.
  • Physics of Fluids, Vol. 31, Issue 12
  • DOI: 10.1063/1.5124099

Ultra-fine surface solid-state electrolytes for long cycle life all-solid-state lithium–air batteries
journal, January 2018

  • Wang, Sheng; Wang, Jue; Liu, Jingjing
  • Journal of Materials Chemistry A, Vol. 6, Issue 43
  • DOI: 10.1039/c8ta08095j

An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li 7 La 3 Zr 2 O 12
journal, January 2019

  • Meesala, Yedukondalu; Liao, Yu-Kai; Jena, Anirudha
  • Journal of Materials Chemistry A, Vol. 7, Issue 14
  • DOI: 10.1039/c9ta00417c

Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries
journal, January 2019

  • Zaman, Wahid; Hortance, Nicholas; Dixit, Marm B.
  • Journal of Materials Chemistry A, Vol. 7, Issue 41
  • DOI: 10.1039/c9ta05118j

Fundamentals of inorganic solid-state electrolytes for batteries
journal, August 2019

  • Famprikis, Theodosios; Canepa, Pieremanuele; Dawson, James A.
  • Nature Materials, Vol. 18, Issue 12
  • DOI: 10.1038/s41563-019-0431-3

Diffusion Limitation of Lithium Metal and Li–Mg Alloy Anodes on LLZO Type Solid Electrolytes as a Function of Temperature and Pressure
journal, October 2019

  • Krauskopf, Thorben; Mogwitz, Boris; Rosenbach, Carolin
  • Advanced Energy Materials, Vol. 9, Issue 44
  • DOI: 10.1002/aenm.201902568

Dynamic Ion Correlations in Solid and Liquid Electrolytes: How Do They Affect Charge and Mass Transport?
journal, November 2019


Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating
journal, November 2018

  • Pang, Quan; Zhou, Laidong; Nazar, Linda F.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 49
  • DOI: 10.1073/pnas.1809187115

Solid‐State Lithium Batteries: Bipolar Design, Fabrication, and Electrochemistry
journal, May 2019

  • Jung, Kyu‐Nam; Shin, Hyun‐Seop; Park, Min‐Sik
  • ChemElectroChem, Vol. 6, Issue 15
  • DOI: 10.1002/celc.201900736

7Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries.
journalarticle, January 2019

  • Marbella, Lauren E.; Zekoll, Stefanie; Kasemchainan, Jitti
  • American Chemical Society (ACS)
  • DOI: 10.17863/cam.38208