skip to main content

DOE PAGESDOE PAGES

Title: 3D electron tomographic and biochemical analysis of ER, Golgi and trans Golgi network membrane systems in stimulated Venus flytrap (Dionaea muscipula) glandular cells

The insect-trapping leaves of Dionaea muscipula provide a model for studying the secretory pathway of an inducible plant secretory system. The leaf glands were induced with bovine serum albumin to secrete proteases that were characterized via zymogram activity gels over a 6-day period. The accompanying morphological changes of the endoplasmic reticulum (ER) and Golgi were analyzed using 3D electron tomography of glands preserved by high-pressure freezing/freeze substitution methods. Secretion of multiple cysteine and aspartic proteases occurred biphasically. The majority of the Golgi was organized in clusters consisting of 3–6 stacks surrounded by a cage-like system of ER cisternae. In these clusters, all Golgi stacks were oriented with their cis-most C1 cisterna facing an ER export site. The C1 Golgi cisternae varied in size and shape consistent with the hypothesis that they form de novo. Following induction, the number of ER-bound polysomes doubled, but no increase in COPII vesicles was observed. Golgi changes included a reduction in the number of cisternae per stack and a doubling of cisternal volume without increased surface area. Polysaccharide molecules that form the sticky slime cause swelling of the trans and trans Golgi network (TGN) cisternae. Peeling of the trans-most cisternae gives rise to free TGNmore » cisternae. One day after gland stimulation, the free TGNs were frequently associated with loose groups of oriented actin-like filaments which were not seen in any other samples. These findings suggest that the secretory apparatus of resting gland cells is “overbuilt” to enable the cells to rapidly up-regulate lytic enzyme production and secretion in response to prey trapping.« less
Authors:
ORCiD logo [1] ;  [2] ;  [3] ;  [4] ;  [5] ;  [1]
  1. Univ. of Colorado, Boulder, CO (United States). Molecular, Cellular & Developmental Biology
  2. National Univ. of La Plata (Argentina). Inst. of Plant Physiology (INFIVE)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  4. Exxel Pharma, Inc., Aurora, CO (United States)
  5. Wilson Sonsini Goodrich & Rosati, San Francisco, CA (United States)
Publication Date:
Report Number(s):
NREL/JA-2700-72519
Journal ID: ISSN 2241-5793
Grant/Contract Number:
AC36-08GO28308; GM-61306
Type:
Accepted Manuscript
Journal Name:
Journal of Biological Research-Thessaloniki
Additional Journal Information:
Journal Volume: 25; Journal ID: ISSN 2241-5793
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org:
USDOE; National Inst. of Health (NIH) (United States)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Venus flytrap; Golgi; trans Golgi network; endoplasmic reticulum; transmission electron microscopy; electron tomography
OSTI Identifier:
1475519

Gergely, Zachary R., Martinez, Dana E., Donohoe, Bryon S., Mogelsvang, Soren, Herder, Rachel, and Staehelin, L. Andrew. 3D electron tomographic and biochemical analysis of ER, Golgi and trans Golgi network membrane systems in stimulated Venus flytrap (Dionaea muscipula) glandular cells. United States: N. p., Web. doi:10.1186/s40709-018-0086-2.
Gergely, Zachary R., Martinez, Dana E., Donohoe, Bryon S., Mogelsvang, Soren, Herder, Rachel, & Staehelin, L. Andrew. 3D electron tomographic and biochemical analysis of ER, Golgi and trans Golgi network membrane systems in stimulated Venus flytrap (Dionaea muscipula) glandular cells. United States. doi:10.1186/s40709-018-0086-2.
Gergely, Zachary R., Martinez, Dana E., Donohoe, Bryon S., Mogelsvang, Soren, Herder, Rachel, and Staehelin, L. Andrew. 2018. "3D electron tomographic and biochemical analysis of ER, Golgi and trans Golgi network membrane systems in stimulated Venus flytrap (Dionaea muscipula) glandular cells". United States. doi:10.1186/s40709-018-0086-2. https://www.osti.gov/servlets/purl/1475519.
@article{osti_1475519,
title = {3D electron tomographic and biochemical analysis of ER, Golgi and trans Golgi network membrane systems in stimulated Venus flytrap (Dionaea muscipula) glandular cells},
author = {Gergely, Zachary R. and Martinez, Dana E. and Donohoe, Bryon S. and Mogelsvang, Soren and Herder, Rachel and Staehelin, L. Andrew},
abstractNote = {The insect-trapping leaves of Dionaea muscipula provide a model for studying the secretory pathway of an inducible plant secretory system. The leaf glands were induced with bovine serum albumin to secrete proteases that were characterized via zymogram activity gels over a 6-day period. The accompanying morphological changes of the endoplasmic reticulum (ER) and Golgi were analyzed using 3D electron tomography of glands preserved by high-pressure freezing/freeze substitution methods. Secretion of multiple cysteine and aspartic proteases occurred biphasically. The majority of the Golgi was organized in clusters consisting of 3–6 stacks surrounded by a cage-like system of ER cisternae. In these clusters, all Golgi stacks were oriented with their cis-most C1 cisterna facing an ER export site. The C1 Golgi cisternae varied in size and shape consistent with the hypothesis that they form de novo. Following induction, the number of ER-bound polysomes doubled, but no increase in COPII vesicles was observed. Golgi changes included a reduction in the number of cisternae per stack and a doubling of cisternal volume without increased surface area. Polysaccharide molecules that form the sticky slime cause swelling of the trans and trans Golgi network (TGN) cisternae. Peeling of the trans-most cisternae gives rise to free TGN cisternae. One day after gland stimulation, the free TGNs were frequently associated with loose groups of oriented actin-like filaments which were not seen in any other samples. These findings suggest that the secretory apparatus of resting gland cells is “overbuilt” to enable the cells to rapidly up-regulate lytic enzyme production and secretion in response to prey trapping.},
doi = {10.1186/s40709-018-0086-2},
journal = {Journal of Biological Research-Thessaloniki},
number = ,
volume = 25,
place = {United States},
year = {2018},
month = {8}
}

Works referenced in this record:

New views of cells in 3D: an introduction to electron tomography
journal, January 2005
  • McIntosh, Richard; Nicastro, Daniela; Mastronarde, David
  • Trends in Cell Biology, Vol. 15, Issue 1, p. 43-51
  • DOI: 10.1016/j.tcb.2004.11.009