skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Engineering stable interfaces for three-dimensional lithium metal anodes

Abstract

Lithium metal has long been considered one of the most promising anode materials for advanced lithium batteries (for example, Li-S and Li-O 2), which could offer significantly improved energy density compared to state-of-the-art lithium ion batteries. Despite decades of intense research efforts, its commercialization remains limited by poor cyclability and safety concerns of lithium metal anodes. One root cause is the parasitic reaction between metallic lithium and the organic liquid electrolyte, resulting in continuous formation of an unstable solid electrolyte interphase, which consumes both active lithium and electrolyte. Until now, it has been challenging to completely shut down the parasitic reaction. We find that a thin-layer coating applied through atomic layer deposition on a hollow carbon host guides lithium deposition inside the hollow carbon sphere and simultaneously prevents electrolyte infiltration by sealing pinholes on the shell of the hollow carbon sphere. By encapsulating lithium inside the stable host, parasitic reactions are prevented, resulting in impressive cycling behavior. In conclusion, we report more than 500 cycles at a high coulombic efficiency of 99% in an ether-based electrolyte at a cycling rate of 0.5 mA/cm 2 and a cycling capacity of 1 mAh/cm 2, which is among the most stable Li anodesmore » reported so far.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3]
  1. Stanford Univ., Stanford, CA (United States)
  2. Bosch Research and Technology Center North America, Palo Alto, CA (United States)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1475492
Grant/Contract Number:  
AC02-76SF00515; 03.25.SS.15
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 7; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Xie, Jin, Wang, Jiangyan, Lee, Hye Ryoung, Yan, Kai, Li, Yuzhang, Shi, Feifei, Huang, William, Pei, Allen, Chen, Gilbert, Subbaraman, Ram, Christensen, Jake, and Cui, Yi. Engineering stable interfaces for three-dimensional lithium metal anodes. United States: N. p., 2018. Web. doi:10.1126/sciadv.aat5168.
Xie, Jin, Wang, Jiangyan, Lee, Hye Ryoung, Yan, Kai, Li, Yuzhang, Shi, Feifei, Huang, William, Pei, Allen, Chen, Gilbert, Subbaraman, Ram, Christensen, Jake, & Cui, Yi. Engineering stable interfaces for three-dimensional lithium metal anodes. United States. doi:10.1126/sciadv.aat5168.
Xie, Jin, Wang, Jiangyan, Lee, Hye Ryoung, Yan, Kai, Li, Yuzhang, Shi, Feifei, Huang, William, Pei, Allen, Chen, Gilbert, Subbaraman, Ram, Christensen, Jake, and Cui, Yi. Fri . "Engineering stable interfaces for three-dimensional lithium metal anodes". United States. doi:10.1126/sciadv.aat5168. https://www.osti.gov/servlets/purl/1475492.
@article{osti_1475492,
title = {Engineering stable interfaces for three-dimensional lithium metal anodes},
author = {Xie, Jin and Wang, Jiangyan and Lee, Hye Ryoung and Yan, Kai and Li, Yuzhang and Shi, Feifei and Huang, William and Pei, Allen and Chen, Gilbert and Subbaraman, Ram and Christensen, Jake and Cui, Yi},
abstractNote = {Lithium metal has long been considered one of the most promising anode materials for advanced lithium batteries (for example, Li-S and Li-O2), which could offer significantly improved energy density compared to state-of-the-art lithium ion batteries. Despite decades of intense research efforts, its commercialization remains limited by poor cyclability and safety concerns of lithium metal anodes. One root cause is the parasitic reaction between metallic lithium and the organic liquid electrolyte, resulting in continuous formation of an unstable solid electrolyte interphase, which consumes both active lithium and electrolyte. Until now, it has been challenging to completely shut down the parasitic reaction. We find that a thin-layer coating applied through atomic layer deposition on a hollow carbon host guides lithium deposition inside the hollow carbon sphere and simultaneously prevents electrolyte infiltration by sealing pinholes on the shell of the hollow carbon sphere. By encapsulating lithium inside the stable host, parasitic reactions are prevented, resulting in impressive cycling behavior. In conclusion, we report more than 500 cycles at a high coulombic efficiency of 99% in an ether-based electrolyte at a cycling rate of 0.5 mA/cm2 and a cycling capacity of 1 mAh/cm2, which is among the most stable Li anodes reported so far.},
doi = {10.1126/sciadv.aat5168},
journal = {Science Advances},
number = 7,
volume = 4,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments
journal, September 2015


Etch rates for micromachining processing-part II
journal, December 2003

  • Williams, K.R.; Gupta, K.; Wasilik, M.
  • Journal of Microelectromechanical Systems, Vol. 12, Issue 6, p. 761-778
  • DOI: 10.1109/JMEMS.2003.820936

Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes
journal, January 2018


Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
journal, September 2014

  • Yan, Kai; Lee, Hyun-Wook; Gao, Teng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503125u

Etch rates for micromachining processing
journal, January 1996

  • Williams, K. R.; Muller, R. S.
  • Journal of Microelectromechanical Systems, Vol. 5, Issue 4
  • DOI: 10.1109/84.546406

Resorcinol–formaldehyde based nanostructured carbons for CO 2 adsorption: kinetics, isotherm and thermodynamic studies
journal, January 2015

  • Goel, Chitrakshi; Bhunia, Haripada; Bajpai, Pramod K.
  • RSC Advances, Vol. 5, Issue 113
  • DOI: 10.1039/C5RA16255F

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Regulating Li deposition at artificial solid electrolyte interphases
journal, January 2017

  • Fan, Lei; Zhuang, Houlong L.; Gao, Lina
  • Journal of Materials Chemistry A, Vol. 5, Issue 7
  • DOI: 10.1039/C6TA10204B

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode
journal, November 2017


Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries
journal, January 2000

  • Aurbach, D.; Zinigrad, E.; Teller, H.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393349

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

A Kinetic Model for Step Coverage by Atomic Layer Deposition in Narrow Holes or Trenches
journal, March 2003

  • Gordon, R. G.; Hausmann, D.; Kim, E.
  • Chemical Vapor Deposition, Vol. 9, Issue 2, p. 73-78
  • DOI: 10.1002/cvde.200390005

Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures
journal, May 2016


Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


Nanometer-Thick Conformal Pore Sealing of Self-Assembled Mesoporous Silica by Plasma-Assisted Atomic Layer Deposition
journal, August 2006

  • Jiang, Ying-Bing; Liu, Nanguo; Gerung, Henry
  • Journal of the American Chemical Society, Vol. 128, Issue 34
  • DOI: 10.1021/ja061097d

Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage
journal, March 2018

  • Ke, Xi; Cheng, Yifeng; Liu, Jun
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 16
  • DOI: 10.1021/acsami.8b01978

Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities
journal, January 2016

  • Choudhury, Snehashis; Archer, Lynden A.
  • Advanced Electronic Materials, Vol. 2, Issue 2
  • DOI: 10.1002/aelm.201500246

Hollow Micro-/Nanostructures: Synthesis and Applications
journal, November 2008

  • Lou, Xiong Wen (David); Archer, Lynden A.; Yang, Zichao
  • Advanced Materials, Vol. 20, Issue 21
  • DOI: 10.1002/adma.200800854

Selective Deposition of Ru Nanoparticles on TiSi 2 Nanonet and Its Utilization for Li 2 O 2 Formation and Decomposition
journal, June 2014

  • Xie, Jin; Yao, Xiahui; Madden, Ian P.
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja504431k

Aprotic and Aqueous Li–O2 Batteries
journal, April 2014

  • Lu, Jun; Li, Li; Park, Jin-Bum
  • Chemical Reviews, Vol. 114, Issue 11, p. 5611-5640
  • DOI: 10.1021/cr400573b

Why Do Lithium-Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect
journal, July 2016

  • Yao, Xiahui; Dong, Qi; Cheng, Qingmei
  • Angewandte Chemie International Edition, Vol. 55, Issue 38
  • DOI: 10.1002/anie.201601783

Carbonisation of resorcinol–formaldehyde organic xerogels: Effect of temperature, particle size and heating rate on the porosity of carbon xerogels
journal, March 2013

  • Moreno, A. H.; Arenillas, A.; Calvo, E. G.
  • Journal of Analytical and Applied Pyrolysis, Vol. 100
  • DOI: 10.1016/j.jaap.2012.12.004

Promises and challenges of nanomaterials for lithium-based rechargeable batteries
journal, June 2016


Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Atomic Layer Deposition of Stable LiAlF 4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling
journal, July 2017


A carbon-based 3D current collector with surface protection for Li metal anode
journal, March 2017


The Lithium-Oxygen Battery with Ether-Based Electrolytes
journal, July 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Drewett, Nicholas E.
  • Angewandte Chemie International Edition, Vol. 50, Issue 37, p. 8609-8613
  • DOI: 10.1002/anie.201102357

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal
journal, December 2017


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries
journal, February 2018

  • Li, Dan; Chen, Long; Wang, Tianshi
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 8
  • DOI: 10.1021/acsami.7b18123

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Hollow Carbon Spheres with Abundant Micropores for Enhanced CO 2 Adsorption
journal, January 2017


    Works referencing / citing this record:

    Towards high energy density lithium battery anodes: silicon and lithium
    journal, January 2019

    • Zhu, Bin; Wang, Xinyu; Yao, Pengcheng
    • Chemical Science, Vol. 10, Issue 30
    • DOI: 10.1039/c9sc01201j

    Towards high energy density lithium battery anodes: silicon and lithium
    journal, January 2019

    • Zhu, Bin; Wang, Xinyu; Yao, Pengcheng
    • Chemical Science, Vol. 10, Issue 30
    • DOI: 10.1039/c9sc01201j