skip to main content

DOE PAGESDOE PAGES

Title: Engineering stable interfaces for three-dimensional lithium metal anodes

Lithium metal has long been considered one of the most promising anode materials for advanced lithium batteries (for example, Li-S and Li-O 2), which could offer significantly improved energy density compared to state-of-the-art lithium ion batteries. Despite decades of intense research efforts, its commercialization remains limited by poor cyclability and safety concerns of lithium metal anodes. One root cause is the parasitic reaction between metallic lithium and the organic liquid electrolyte, resulting in continuous formation of an unstable solid electrolyte interphase, which consumes both active lithium and electrolyte. Until now, it has been challenging to completely shut down the parasitic reaction. We find that a thin-layer coating applied through atomic layer deposition on a hollow carbon host guides lithium deposition inside the hollow carbon sphere and simultaneously prevents electrolyte infiltration by sealing pinholes on the shell of the hollow carbon sphere. By encapsulating lithium inside the stable host, parasitic reactions are prevented, resulting in impressive cycling behavior. In conclusion, we report more than 500 cycles at a high coulombic efficiency of 99% in an ether-based electrolyte at a cycling rate of 0.5 mA/cm 2 and a cycling capacity of 1 mAh/cm 2, which is among the most stable Li anodesmore » reported so far.« less
Authors:
ORCiD logo [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [2] ; ORCiD logo [2] ; ORCiD logo [3]
  1. Stanford Univ., Stanford, CA (United States)
  2. Bosch Research and Technology Center North America, Palo Alto, CA (United States)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Grant/Contract Number:
AC02-76SF00515; 03.25.SS.15
Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 7; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE
OSTI Identifier:
1475492

Xie, Jin, Wang, Jiangyan, Lee, Hye Ryoung, Yan, Kai, Li, Yuzhang, Shi, Feifei, Huang, William, Pei, Allen, Chen, Gilbert, Subbaraman, Ram, Christensen, Jake, and Cui, Yi. Engineering stable interfaces for three-dimensional lithium metal anodes. United States: N. p., Web. doi:10.1126/sciadv.aat5168.
Xie, Jin, Wang, Jiangyan, Lee, Hye Ryoung, Yan, Kai, Li, Yuzhang, Shi, Feifei, Huang, William, Pei, Allen, Chen, Gilbert, Subbaraman, Ram, Christensen, Jake, & Cui, Yi. Engineering stable interfaces for three-dimensional lithium metal anodes. United States. doi:10.1126/sciadv.aat5168.
Xie, Jin, Wang, Jiangyan, Lee, Hye Ryoung, Yan, Kai, Li, Yuzhang, Shi, Feifei, Huang, William, Pei, Allen, Chen, Gilbert, Subbaraman, Ram, Christensen, Jake, and Cui, Yi. 2018. "Engineering stable interfaces for three-dimensional lithium metal anodes". United States. doi:10.1126/sciadv.aat5168. https://www.osti.gov/servlets/purl/1475492.
@article{osti_1475492,
title = {Engineering stable interfaces for three-dimensional lithium metal anodes},
author = {Xie, Jin and Wang, Jiangyan and Lee, Hye Ryoung and Yan, Kai and Li, Yuzhang and Shi, Feifei and Huang, William and Pei, Allen and Chen, Gilbert and Subbaraman, Ram and Christensen, Jake and Cui, Yi},
abstractNote = {Lithium metal has long been considered one of the most promising anode materials for advanced lithium batteries (for example, Li-S and Li-O2), which could offer significantly improved energy density compared to state-of-the-art lithium ion batteries. Despite decades of intense research efforts, its commercialization remains limited by poor cyclability and safety concerns of lithium metal anodes. One root cause is the parasitic reaction between metallic lithium and the organic liquid electrolyte, resulting in continuous formation of an unstable solid electrolyte interphase, which consumes both active lithium and electrolyte. Until now, it has been challenging to completely shut down the parasitic reaction. We find that a thin-layer coating applied through atomic layer deposition on a hollow carbon host guides lithium deposition inside the hollow carbon sphere and simultaneously prevents electrolyte infiltration by sealing pinholes on the shell of the hollow carbon sphere. By encapsulating lithium inside the stable host, parasitic reactions are prevented, resulting in impressive cycling behavior. In conclusion, we report more than 500 cycles at a high coulombic efficiency of 99% in an ether-based electrolyte at a cycling rate of 0.5 mA/cm2 and a cycling capacity of 1 mAh/cm2, which is among the most stable Li anodes reported so far.},
doi = {10.1126/sciadv.aat5168},
journal = {Science Advances},
number = 7,
volume = 4,
place = {United States},
year = {2018},
month = {7}
}

Works referenced in this record:

Etch rates for micromachining processing-part II
journal, December 2003
  • Williams, K.R.; Gupta, K.; Wasilik, M.
  • Journal of Microelectromechanical Systems, Vol. 12, Issue 6, p. 761-778
  • DOI: 10.1109/JMEMS.2003.820936

A Kinetic Model for Step Coverage by Atomic Layer Deposition in Narrow Holes or Trenches
journal, March 2003
  • Gordon, R. G.; Hausmann, D.; Kim, E.
  • Chemical Vapor Deposition, Vol. 9, Issue 2, p. 73-78
  • DOI: 10.1002/cvde.200390005

Aprotic and Aqueous Li–O2 Batteries
journal, April 2014
  • Lu, Jun; Li, Li; Park, Jin-Bum
  • Chemical Reviews, Vol. 114, Issue 11, p. 5611-5640
  • DOI: 10.1021/cr400573b

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016
  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

The Lithium-Oxygen Battery with Ether-Based Electrolytes
journal, July 2011
  • Freunberger, Stefan A.; Chen, Yuhui; Drewett, Nicholas E.
  • Angewandte Chemie International Edition, Vol. 50, Issue 37, p. 8609-8613
  • DOI: 10.1002/anie.201102357

Li–O2 and Li–S batteries with high energy storage
journal, January 2012
  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191