skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A cryogenically cooled high voltage DC photoemission electron source

Abstract

Linear electron accelerators and their applications such as ultrafast electron diffraction require compact high-brightness electron sources with high voltage and electric field at the photocathode to maximize the electron density and minimize space-charge induced emittance growth. Achieving high brightness from a compact source is a challenging task because it involves an often-conflicting interplay between various requirements imposed by photoemission, acceleration, and beam dynamics. Here we present a new design for a compact high voltage DC electron gun with a novel cryogenic photocathode system and report on its construction and commissioning process. This photoemission gun can operate at ~200 kV at both room temperature and cryogenic temperature with a corresponding electric field of 10 MV/m, necessary for achieving high quality electron beams without requiring the complexity of guns, e.g., based on RF superconductivity. Furthermore, it hosts a compact photocathode plug compatible with that used in several other laboratories opening the possibility of generating and characterizing electron beam from photocathodes developed at other institutions.

Authors:
 [1];  [1]; ORCiD logo [1];  [2];  [1];  [1]
  1. Cornell Univ., Ithaca, NY (United States)
  2. Cornell Univ., Ithaca, NY (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1475491
Grant/Contract Number:  
AC02-76SF00515; PHY-1416318
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 89; Journal Issue: 8; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Lee, Hyeri, Liu, Xianghong, Cultrera, Luca, Dunham, Bruce, Kostroun, Vaclav O., and Bazarov, Ivan V. A cryogenically cooled high voltage DC photoemission electron source. United States: N. p., 2018. Web. doi:10.1063/1.5024954.
Lee, Hyeri, Liu, Xianghong, Cultrera, Luca, Dunham, Bruce, Kostroun, Vaclav O., & Bazarov, Ivan V. A cryogenically cooled high voltage DC photoemission electron source. United States. doi:10.1063/1.5024954.
Lee, Hyeri, Liu, Xianghong, Cultrera, Luca, Dunham, Bruce, Kostroun, Vaclav O., and Bazarov, Ivan V. Thu . "A cryogenically cooled high voltage DC photoemission electron source". United States. doi:10.1063/1.5024954. https://www.osti.gov/servlets/purl/1475491.
@article{osti_1475491,
title = {A cryogenically cooled high voltage DC photoemission electron source},
author = {Lee, Hyeri and Liu, Xianghong and Cultrera, Luca and Dunham, Bruce and Kostroun, Vaclav O. and Bazarov, Ivan V.},
abstractNote = {Linear electron accelerators and their applications such as ultrafast electron diffraction require compact high-brightness electron sources with high voltage and electric field at the photocathode to maximize the electron density and minimize space-charge induced emittance growth. Achieving high brightness from a compact source is a challenging task because it involves an often-conflicting interplay between various requirements imposed by photoemission, acceleration, and beam dynamics. Here we present a new design for a compact high voltage DC electron gun with a novel cryogenic photocathode system and report on its construction and commissioning process. This photoemission gun can operate at ~200 kV at both room temperature and cryogenic temperature with a corresponding electric field of 10 MV/m, necessary for achieving high quality electron beams without requiring the complexity of guns, e.g., based on RF superconductivity. Furthermore, it hosts a compact photocathode plug compatible with that used in several other laboratories opening the possibility of generating and characterizing electron beam from photocathodes developed at other institutions.},
doi = {10.1063/1.5024954},
journal = {Review of Scientific Instruments},
number = 8,
volume = 89,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

4D Electron Microscopy: Principles and Applications
journal, August 2012

  • Flannigan, David J.; Zewail, Ahmed H.
  • Accounts of Chemical Research, Vol. 45, Issue 10
  • DOI: 10.1021/ar3001684

Bi-alkali antimonide photocathodes for high brightness accelerators
journal, September 2013

  • Schubert, S.; Ruiz-Osés, M.; Ben-Zvi, I.
  • APL Materials, Vol. 1, Issue 3
  • DOI: 10.1063/1.4821625

Near atomically smooth alkali antimonide photocathode thin films
journal, January 2017

  • Feng, Jun; Karkare, Siddharth; Nasiatka, James
  • Journal of Applied Physics, Vol. 121, Issue 4
  • DOI: 10.1063/1.4974363

Temperature-dependent quantum efficiency degradation of K-Cs-Sb bialkali antimonide photocathodes grown by a triple-element codeposition method
journal, November 2017


Ultrafast laser pulse heating of metallic photocathodes and its contribution to intrinsic emittance
journal, September 2017

  • Maxson, J.; Musumeci, P.; Cultrera, L.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 865
  • DOI: 10.1016/j.nima.2016.08.032

High-coherence electron bunches produced by femtosecond photoionization
journal, April 2013

  • Engelen, W. J.; van der Heijden, M. A.; Bakker, D. J.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2700

Mapping molecular motions leading to charge delocalization with ultrabright electrons
journal, April 2013

  • Gao, Meng; Lu, Cheng; Jean-Ruel, Hubert
  • Nature, Vol. 496, Issue 7445
  • DOI: 10.1038/nature12044

Coherence of femtosecond single electrons exceeds biomolecular dimensions
journal, June 2013


Review and demonstration of ultra-low-emittance photocathode measurements
journal, July 2015

  • Lee, Hyeri; Karkare, Siddharth; Cultrera, Luca
  • Review of Scientific Instruments, Vol. 86, Issue 7
  • DOI: 10.1063/1.4927381

Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source
journal, February 2016

  • Wells, R. P.; Ghiorso, W.; Staples, J.
  • Review of Scientific Instruments, Vol. 87, Issue 2
  • DOI: 10.1063/1.4941836

Ultrafast electron diffraction using an ultracold source
journal, May 2014

  • van Mourik, M. W.; Engelen, W. J.; Vredenbregt, E. J. D.
  • Structural Dynamics, Vol. 1, Issue 3
  • DOI: 10.1063/1.4882074

Increasing the Brightness of Cold Ion Beams by Suppressing Disorder-Induced Heating with Rydberg Blockade
journal, November 2015


Ultrafast electron microscopy in materials science, biology, and chemistry
journal, June 2005

  • King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan
  • Journal of Applied Physics, Vol. 97, Issue 11
  • DOI: 10.1063/1.1927699

Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction
journal, January 2001


High-coherence picosecond electron bunches from cold atoms
journal, April 2013

  • McCulloch, A. J.; Sheludko, D. V.; Junker, M.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2699

Ultrafast electron optics: Propagation dynamics of femtosecond electron packets
journal, August 2002

  • Siwick, Bradley J.; Dwyer, Jason R.; Jordan, Robert E.
  • Journal of Applied Physics, Vol. 92, Issue 3
  • DOI: 10.1063/1.1487437

Electronic transport through EuO spin-filter tunnel junctions
journal, November 2012


Cold intense electron beams from -cooled GaAs-photocathodes
journal, January 2005

  • Weigel, U.; Orlov, D. A.; Kosolobov, S. N.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 536, Issue 3
  • DOI: 10.1016/j.nima.2004.08.092

Effective temperature of an ultracold electron source based on near-threshold photoionization
journal, January 2014


Measurement of the tradeoff between intrinsic emittance and quantum efficiency from a NaKSb photocathode near threshold
journal, June 2015

  • Maxson, Jared; Cultrera, Luca; Gulliford, Colwyn
  • Applied Physics Letters, Vol. 106, Issue 23
  • DOI: 10.1063/1.4922146

Mapping Atomic Motions with Ultrabright Electrons: The Chemists' Gedanken Experiment Enters the Lab Frame
journal, April 2014


Ultrafast electron diffraction with radio-frequency compressed electron pulses
journal, August 2012

  • Chatelain, Robert P.; Morrison, Vance R.; Godbout, Chris
  • Applied Physics Letters, Vol. 101, Issue 8
  • DOI: 10.1063/1.4747155

A photoinduced metal-like phase of monoclinic VO 2 revealed by ultrafast electron diffraction
journal, October 2014

  • Morrison, Vance R.; Chatelain, Robert. P.; Tiwari, Kunal L.
  • Science, Vol. 346, Issue 6208
  • DOI: 10.1126/science.1253779

Thermal limit to the intrinsic emittance from metal photocathodes
journal, September 2015

  • Feng, Jun; Nasiatka, J.; Wan, Weishi
  • Applied Physics Letters, Vol. 107, Issue 13
  • DOI: 10.1063/1.4931976

Thermal emittance measurements of a cesium potassium antimonide photocathode
journal, May 2011

  • Bazarov, Ivan; Cultrera, Luca; Bartnik, Adam
  • Applied Physics Letters, Vol. 98, Issue 22
  • DOI: 10.1063/1.3596450

Ultracold Electron Sources
journal, September 2007

  • Luiten, O. J.; Claessens, B. J.; Van Der Geer, S. B.
  • International Journal of Modern Physics A, Vol. 22, Issue 22
  • DOI: 10.1142/s0217751x07037494

Monte Carlo simulations of electron photoemission from cesium antimonide
journal, June 2017

  • Gupta, Pranav; Cultrera, Luca; Bazarov, Ivan
  • Journal of Applied Physics, Vol. 121, Issue 21
  • DOI: 10.1063/1.4984263

Deflecting cavity for beam diagnostics at Cornell ERL injector
journal, March 2010

  • Belomestnykh, Sergey; Bazarov, Ivan; Shemelin, Valery
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 614, Issue 2
  • DOI: 10.1016/j.nima.2009.12.063

CrO 2 predicted as a half-metallic ferromagnet
journal, September 1986


Alkali antimonides photocathodes growth using pure metals evaporation from effusion cells
journal, December 2015

  • Cultrera, Luca; Lee, Hyeri; Bazarov, Ivan
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 34, Issue 1
  • DOI: 10.1116/1.4936845

An ultracold low emittance electron source
journal, June 2014


Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap
journal, September 2014

  • Maxson, Jared; Bazarov, Ivan; Dunham, Bruce
  • Review of Scientific Instruments, Vol. 85, Issue 9
  • DOI: 10.1063/1.4895641

Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light
journal, March 2016

  • Cultrera, L.; Gulliford, C.; Bartnik, A.
  • Applied Physics Letters, Vol. 108, Issue 13
  • DOI: 10.1063/1.4945091

Rb based alkali antimonide high quantum efficiency photocathodes for bright electron beam sources and photon detection applications
journal, February 2017

  • Cultrera, L.; Gulliford, C.; Bartnik, A.
  • Journal of Applied Physics, Vol. 121, Issue 5
  • DOI: 10.1063/1.4975469

Femtosecond electron diffraction: heralding the era of atomically resolved dynamics
journal, August 2011


Thermal emittance and response time measurements of negative electron affinity photocathodes
journal, March 2008

  • Bazarov, Ivan V.; Dunham, Bruce M.; Li, Yulin
  • Journal of Applied Physics, Vol. 103, Issue 5
  • DOI: 10.1063/1.2838209

Fundamental photoemission brightness limit from disorder induced heating
journal, October 2013


High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun
journal, February 2016

  • Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.
  • IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, Issue 1
  • DOI: 10.1109/tdei.2015.005126