DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage

Abstract

Batteries are an attractive grid energy storage technology, but a reliable battery system with the functionalities required for a grid such as high power capability, high safety and low cost remains elusive. Here, we report a solid electrolyte-based molten lithium battery constructed with a molten lithium anode, a molten Sn–Pb or Bi–Pb alloy cathode and a garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) solid electrolyte tube. We show that the assembled Li||LLZTO||Sn–Pb and Li||LLZTO||Bi–Pb cells can stably cycle at an intermediate temperature of 240 °C for about one month at current densities of 50 mA cm–2 and 100 mA cm–2 respectively, with almost no capacity decay and an average Coulombic efficiency of 99.98%. Furthermore, the cells demonstrate high power capability with current densities up to 300 mA cm–2 (90 mW cm–2) for Li||LLZTO||Sn–Pb and 500 mA cm–2 (175 mW cm–2) for Li||LLZTO||Bi–Pb. Lastly, our design offers prospects for grid energy storage with intermediate temperature operations, high safety margin and low capital and maintenance costs.

Authors:
 [1];  [2]; ORCiD logo [2];  [3];  [2];  [2];  [2];  [4]
  1. Tsinghua Univ., Beijing (China); Zhengzhou Univ., Zhengzhou (China)
  2. Tsinghua Univ., Beijing (China)
  3. Stanford Univ., Stanford, CA (United States)
  4. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1475485
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 3; Journal Issue: 9; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Jin, Yang, Liu, Kai, Lang, Jialiang, Zhuo, Denys, Huang, Zeya, Wang, Chang-an, Wu, Hui, and Cui, Yi. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. United States: N. p., 2018. Web. doi:10.1038/s41560-018-0198-9.
Jin, Yang, Liu, Kai, Lang, Jialiang, Zhuo, Denys, Huang, Zeya, Wang, Chang-an, Wu, Hui, & Cui, Yi. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. United States. https://doi.org/10.1038/s41560-018-0198-9
Jin, Yang, Liu, Kai, Lang, Jialiang, Zhuo, Denys, Huang, Zeya, Wang, Chang-an, Wu, Hui, and Cui, Yi. Mon . "An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage". United States. https://doi.org/10.1038/s41560-018-0198-9. https://www.osti.gov/servlets/purl/1475485.
@article{osti_1475485,
title = {An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage},
author = {Jin, Yang and Liu, Kai and Lang, Jialiang and Zhuo, Denys and Huang, Zeya and Wang, Chang-an and Wu, Hui and Cui, Yi},
abstractNote = {Batteries are an attractive grid energy storage technology, but a reliable battery system with the functionalities required for a grid such as high power capability, high safety and low cost remains elusive. Here, we report a solid electrolyte-based molten lithium battery constructed with a molten lithium anode, a molten Sn–Pb or Bi–Pb alloy cathode and a garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) solid electrolyte tube. We show that the assembled Li||LLZTO||Sn–Pb and Li||LLZTO||Bi–Pb cells can stably cycle at an intermediate temperature of 240 °C for about one month at current densities of 50 mA cm–2 and 100 mA cm–2 respectively, with almost no capacity decay and an average Coulombic efficiency of 99.98%. Furthermore, the cells demonstrate high power capability with current densities up to 300 mA cm–2 (90 mW cm–2) for Li||LLZTO||Sn–Pb and 500 mA cm–2 (175 mW cm–2) for Li||LLZTO||Bi–Pb. Lastly, our design offers prospects for grid energy storage with intermediate temperature operations, high safety margin and low capital and maintenance costs.},
doi = {10.1038/s41560-018-0198-9},
journal = {Nature Energy},
number = 9,
volume = 3,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Schematic and optical image of the LillLLZTOllliquid cathode battery. a, Schematic of the Lillsolid electrolytellliquid cathode battery. b, Digital photo of a U-shaped LLZTO tube. c, Digital photo of an assembled LillLLZTOIISn-Pb alloy battery.

Save / Share:

Works referenced in this record:

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Switching on Fast Lithium Ion Conductivity in Garnets: The Structure and Transport Properties of Li 3+ x Nd 3 Te 2− x Sb x O 12
journal, March 2008

  • O’Callaghan, Michael P.; Powell, Andrew S.; Titman, Jeremy J.
  • Chemistry of Materials, Vol. 20, Issue 6
  • DOI: 10.1021/cm703677q

Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies
journal, April 2017


Thermodynamic Study of the Lithium-Tin System
journal, January 1981

  • Wen, C. John
  • Journal of The Electrochemical Society, Vol. 128, Issue 6
  • DOI: 10.1149/1.2127590

Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage
journal, January 2015

  • Thangadurai, Venkataraman; Pinzaru, Dana; Narayanan, Sumaletha
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 2
  • DOI: 10.1021/jz501828v

Magnesium–Antimony Liquid Metal Battery for Stationary Energy Storage
journal, January 2012

  • Bradwell, David J.; Kim, Hojong; Sirk, Aislinn H. C.
  • Journal of the American Chemical Society, Vol. 134, Issue 4
  • DOI: 10.1021/ja209759s

Lithium–antimony–lead liquid metal battery for grid-level energy storage
journal, September 2014


Change of Conductivity with Salt Content, Solvent Composition, and Temperature for Electrolytes of LiPF[sub 6] in Ethylene Carbonate-Ethyl Methyl Carbonate
journal, January 2001

  • Ding, M. S.; Xu, K.; Zhang, S. S.
  • Journal of The Electrochemical Society, Vol. 148, Issue 10
  • DOI: 10.1149/1.1403730

Thermodynamic properties of a quasi‐ionic alloy from electromotive force measurements: The Li–Pb system
journal, February 1978

  • Saboungi, Marie‐Louise; Marr, Jane; Blander, Milton
  • The Journal of Chemical Physics, Vol. 68, Issue 4
  • DOI: 10.1063/1.435957

Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

Self-healing Li–Bi liquid metal battery for grid-scale energy storage
journal, February 2015


Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries
journal, January 2014

  • Ouchi, Takanari; Kim, Hojong; Ning, Xiaohui
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0801412jes

The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

The Sodium∣Tin Liquid-Metal Cell
journal, January 1962

  • Weaver, Robert D.; Smith, Stanley W.; Willmann, Norman L.
  • Journal of The Electrochemical Society, Vol. 109, Issue 8, p. 653-657
  • DOI: 10.1149/1.2425523

Thermodynamic Properties of the Intermetallic Systems Lithium-Antimony and Lithium-Bismuth
journal, January 1978

  • Weppner, W.
  • Journal of The Electrochemical Society, Vol. 125, Issue 1
  • DOI: 10.1149/1.2131401

Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li 7 La 3 Zr 2 O 12
journal, January 2013

  • Jalem, Randy; Yamamoto, Yoshihiro; Shiiba, Hiromasa
  • Chemistry of Materials, Vol. 25, Issue 3
  • DOI: 10.1021/cm303542x

Liquid Metal Electrodes for Energy Storage Batteries
journal, May 2016

  • Li, Haomiao; Yin, Huayi; Wang, Kangli
  • Advanced Energy Materials, Vol. 6, Issue 14
  • DOI: 10.1002/aenm.201600483

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives
journal, May 2010


Calcium–bismuth electrodes for large-scale energy storage (liquid metal batteries)
journal, November 2013


Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011

  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

Garnet-type Li6.4La3Zr1.4Ta0.6O12 thin sheet: Fabrication and application in lithium–hydrogen peroxide semi-fuel cell
journal, November 2014


Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12
journal, January 2013


Secondary Cells with Lithium Anodes and Immobilized Fused-Salt Electrolytes
journal, January 1969

  • Shimotake, Hiroshi; Rogers, G. L.; Cairns, E. J.
  • Industrial & Engineering Chemistry Process Design and Development, Vol. 8, Issue 1
  • DOI: 10.1021/i260029a009

Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method
journal, October 2011


Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage
journal, August 2014

  • Lu, Xiaochuan; Li, Guosheng; Kim, Jin Y.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5578

Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries
journal, October 2017


Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density
journal, February 2016

  • Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10683

Works referencing / citing this record:

A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries
journal, August 2019

  • Ryu, Jaegeon; Song, Woo‐Jin; Lee, Sangyeop
  • Advanced Functional Materials, Vol. 30, Issue 2
  • DOI: 10.1002/adfm.201902499

A Liquid‐Metal‐Enabled Versatile Organic Alkali‐Ion Battery
journal, January 2019


Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for High‐Voltage Lithium Metal Batteries
journal, January 2019


Electrochemical Diagram of an Ultrathin Lithium Metal Anode in Pouch Cells
journal, July 2019


Uniform Lithium Deposition Assisted by Single‐Atom Doping toward High‐Performance Lithium Metal Anodes
journal, March 2019

  • Zhai, Pengbo; Wang, Tianshuai; Yang, Weiwei
  • Advanced Energy Materials, Vol. 9, Issue 18
  • DOI: 10.1002/aenm.201804019

Reducing the Interfacial Resistance in All‐Solid‐State Lithium Batteries Based on Oxide Ceramic Electrolytes
journal, April 2019


The Challenge of Lithium Metal Anodes for Practical Applications
journal, April 2019


Designing solid-state interfaces on lithium-metal anodes: a review
journal, September 2019


Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition
journal, January 2020


Designing solid-state electrolytes for safe, energy-dense batteries
journal, February 2020


A painted layer for high-rate and high-capacity solid-state lithium–metal batteries
journal, January 2019

  • Sun, Bin; Jin, Yang; Lang, Jialiang
  • Chemical Communications, Vol. 55, Issue 47
  • DOI: 10.1039/c9cc02394a

A graphite intercalation compound associated with liquid Na–K towards ultra-stable and high-capacity alkali metal anodes
journal, January 2019

  • Zhang, Leyuan; Peng, Sangshan; Ding, Yu
  • Energy & Environmental Science, Vol. 12, Issue 6
  • DOI: 10.1039/c9ee00437h

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.