skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct Measurement of Anharmonic Decay Channels of a Coherent Phonon

Abstract

In this paper, we report channel-resolved measurements of the anharmonic coupling of the coherent $${A}_{1g}$$ phonon in photoexcited bismuth to pairs of high wave vector acoustic phonons. The decay of a coherent phonon can be understood as a parametric resonance process whereby the atomic displacement periodically modulates the frequency of a broad continuum of modes. This coupling drives temporal oscillations in the phonon mean-square displacements at the $${A}_{1g}$$ frequency that are observed across the Brillouin zone by femtosecond x-ray diffuse scattering. Finally, we extract anharmonic coupling constants between the $${A}_{1g}$$ and several representative decay channels that are within an order of magnitude of density functional perturbation theory calculations.

Authors:
 [1];  [2];  [3];  [2];  [4];  [5];  [5];  [5];  [6];  [7];  [7];  [8];  [8];  [1];  [9]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford PULSE Inst. Stanford Inst. for Materials and Energy Sciences
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford PULSE Inst.; Stanford Univ., CA (United States). Dept. of Physics
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford PULSE Inst.; Stanford Univ., CA (United States). Dept. of Applied Physics
  4. Stanford Univ., CA (United States). Dept. of Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford PULSE Inst.
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  6. Imperial College London (United Kingdom). Dept. of Physics. Dept. of Materials
  7. Tyndall National Inst., Cork (Ireland); Univ. College Cork (Ireland). Dept. of Physics
  8. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford PULSE Inst. Stanford Inst. for Materials and Energy Sciences; Stanford Univ., CA (United States). Dept. of Applied Physics. Dept. of Photon Science
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States); Tyndall National Inst., Cork (Ireland); Univ. College Cork (Ireland)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Science Foundation Ireland (SFI); Irish Research Council
OSTI Identifier:
1475393
Alternate Identifier(s):
OSTI ID: 1471767
Grant/Contract Number:  
AC02-76SF00515; SC0008574; 12/IA/1601; GOIPG/2015/2784
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 121; Journal Issue: 12; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; anharmonic lattice dynamics; electron-phonon coupling; thermal conductivity; ultrafast pump-probe spectroscopy; X-ray scattering

Citation Formats

Teitelbaum, Samuel W., Henighan, Thomas, Huang, Yijing, Liu, Hanzhe, Jiang, Mason P., Zhu, Diling, Chollet, Matthieu, Sato, Takahiro, Murray, Éamonn D., Fahy, Stephen, O’Mahony, Shane, Bailey, Trevor P., Uher, Ctirad, Trigo, Mariano, and Reis, David A. Direct Measurement of Anharmonic Decay Channels of a Coherent Phonon. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.121.125901.
Teitelbaum, Samuel W., Henighan, Thomas, Huang, Yijing, Liu, Hanzhe, Jiang, Mason P., Zhu, Diling, Chollet, Matthieu, Sato, Takahiro, Murray, Éamonn D., Fahy, Stephen, O’Mahony, Shane, Bailey, Trevor P., Uher, Ctirad, Trigo, Mariano, & Reis, David A. Direct Measurement of Anharmonic Decay Channels of a Coherent Phonon. United States. doi:10.1103/PhysRevLett.121.125901.
Teitelbaum, Samuel W., Henighan, Thomas, Huang, Yijing, Liu, Hanzhe, Jiang, Mason P., Zhu, Diling, Chollet, Matthieu, Sato, Takahiro, Murray, Éamonn D., Fahy, Stephen, O’Mahony, Shane, Bailey, Trevor P., Uher, Ctirad, Trigo, Mariano, and Reis, David A. Thu . "Direct Measurement of Anharmonic Decay Channels of a Coherent Phonon". United States. doi:10.1103/PhysRevLett.121.125901. https://www.osti.gov/servlets/purl/1475393.
@article{osti_1475393,
title = {Direct Measurement of Anharmonic Decay Channels of a Coherent Phonon},
author = {Teitelbaum, Samuel W. and Henighan, Thomas and Huang, Yijing and Liu, Hanzhe and Jiang, Mason P. and Zhu, Diling and Chollet, Matthieu and Sato, Takahiro and Murray, Éamonn D. and Fahy, Stephen and O’Mahony, Shane and Bailey, Trevor P. and Uher, Ctirad and Trigo, Mariano and Reis, David A.},
abstractNote = {In this paper, we report channel-resolved measurements of the anharmonic coupling of the coherent ${A}_{1g}$ phonon in photoexcited bismuth to pairs of high wave vector acoustic phonons. The decay of a coherent phonon can be understood as a parametric resonance process whereby the atomic displacement periodically modulates the frequency of a broad continuum of modes. This coupling drives temporal oscillations in the phonon mean-square displacements at the ${A}_{1g}$ frequency that are observed across the Brillouin zone by femtosecond x-ray diffuse scattering. Finally, we extract anharmonic coupling constants between the ${A}_{1g}$ and several representative decay channels that are within an order of magnitude of density functional perturbation theory calculations.},
doi = {10.1103/PhysRevLett.121.125901},
journal = {Physical Review Letters},
number = 12,
volume = 121,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Phonon dispersion relation in bismuth along the q = (⅓ ξ ξ ξ ) direction, illustrating a decay channel of an $A$1g phonon into a pair of LA phonons at $q$ and $−q$. (b) experimental signature of decay of the $A$1g phonon in bismuth by the channelmore » shown in (a). The lower (blue) curve shows the relative intensity change of the (2 3 2) Bragg peak, which is proportional to the $A$1g mode amplitude. The upper (orange) curve shows the relative intenisty change of the diffuse scattering Δ$I$/$I$ in a region near $q$ = (0.1 0.3 0.3) in the (0 1 1) zone (multiplied by 10). The black lines are simulations. The dashed line indicates a $π$/2 phase shift between the $A$1g mode and the target mode.« less

Save / Share:

Works referenced in this record:

Optical Probing of Ultrafast Electronic Decay in Bi and Sb with Slow Phonons
journal, January 2013


Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

Scattering of Neutrons by Phonons in an Aluminum Single Crystal
journal, October 1955


Directly Observing Squeezed Phonon States with Femtosecond X-Ray Diffraction
journal, April 2009


Perspectives on thermoelectrics: from fundamentals to device applications
journal, January 2012

  • Zebarjadi, M.; Esfarjani, K.; Dresselhaus, M. S.
  • Energy Environ. Sci., Vol. 5, Issue 1, p. 5147-5162
  • DOI: 10.1039/C1EE02497C

Impulsive excitation of coherent phonons observed in reflection in bismuth and antimony
journal, September 1990

  • Cheng, T. K.; Brorson, S. D.; Kazeroonian, A. S.
  • Applied Physics Letters, Vol. 57, Issue 10
  • DOI: 10.1063/1.104090

First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO 3
journal, September 1995


Squeezed Phonon States: Modulating Quantum Fluctuations of Atomic Displacements
journal, March 1996


Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon–phonon correlations
journal, October 2013

  • Trigo, M.; Fuchs, M.; Chen, J.
  • Nature Physics, Vol. 9, Issue 12
  • DOI: 10.1038/nphys2788

Squeezing in harmonic oscillators with time-dependent frequencies
journal, February 1989


Dephasing of coherent phonons by lattice defects in bismuth films
journal, March 2000

  • Hase, Muneaki; Ishioka, Kunie; Kitajima, Masahiro
  • Applied Physics Letters, Vol. 76, Issue 10
  • DOI: 10.1063/1.126002

CSPAD-140k: A versatile detector for LCLS experiments
journal, August 2013

  • Herrmann, Sven; Boutet, Sébastien; Duda, Brian
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 718
  • DOI: 10.1016/j.nima.2013.01.057

Phonon spectroscopy by inelastic x-ray scattering
journal, January 2000


Control of two-phonon correlations and the mechanism of high-wavevector phonon generation by ultrafast light pulses
journal, July 2016


Squeezed Thermal Phonons Precurse Nonthermal Melting of Silicon as a Function of Fluence
journal, January 2013


Electron Cooling and Debye-Waller Effect in Photoexcited Bismuth
journal, January 2013


Distributions of phonon lifetimes in Brillouin zones
journal, March 2015


Resonant squeezing and the anharmonic decay of coherent phonons
journal, April 2016


Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit
journal, March 2003

  • Sokolowski-Tinten, Klaus; Blome, Christian; Blums, Juris
  • Nature, Vol. 422, Issue 6929
  • DOI: 10.1038/nature01490

Vacuum Squeezing of Solids: Macroscopic Quantum States Driven by Light Pulses
journal, March 1997


Anharmonic Phonon Lifetimes in Semiconductors from Density-Functional Perturbation Theory
journal, August 1995


Nonequilibrium dynamics of the phonon gas in ultrafast-excited antimony
journal, December 2017


The X-ray Pump–Probe instrument at the Linac Coherent Light Source
journal, April 2015

  • Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco
  • Journal of Synchrotron Radiation, Vol. 22, Issue 3
  • DOI: 10.1107/S1600577515005135

Possible light-induced superconductivity in K3C60 at high temperature
journal, February 2016

  • Mitrano, M.; Cantaluppi, A.; Nicoletti, D.
  • Nature, Vol. 530, Issue 7591
  • DOI: 10.1038/nature16522

Birth and decay of coherent optical phonons in femtosecond-laser-excited bismuth
journal, October 2008


Coherent and incoherent structural dynamics in laser-excited antimony
journal, February 2017


Phonon spectroscopy with sub-meV resolution by femtosecond x-ray diffuse scattering
journal, August 2015


Direct observation of electron thermalization and electron-phonon coupling in photoexcited bismuth
journal, August 2013


Nonlinear phononics as an ultrafast route to lattice control
journal, August 2011

  • Först, M.; Manzoni, C.; Kaiser, S.
  • Nature Physics, Vol. 7, Issue 11
  • DOI: 10.1038/nphys2055

Ultrafast Bond Softening in Bismuth: Mapping a Solid's Interatomic Potential with X-rays
journal, February 2007


Phonon dispersion relations and softening in photoexcited bismuth from first principles
journal, May 2007


    Works referencing / citing this record:

    Ultrafast dynamics of spin and orbital correlations in quantum materials: an energy- and momentum-resolved perspective
    journal, April 2019

    • Cao, Y.; Mazzone, D. G.; Meyers, D.
    • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2145
    • DOI: 10.1098/rsta.2017.0480

    Ultrafast dynamics of spin and orbital correlations in quantum materials: an energy- and momentum-resolved perspective
    journal, April 2019

    • Cao, Y.; Mazzone, D. G.; Meyers, D.
    • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2145
    • DOI: 10.1098/rsta.2017.0480

    Measuring non-equilibrium dynamics in complex solids with ultrashort X-ray pulses
    journal, April 2019

    • Buzzi, Michele; Först, Michael; Cavalleri, Andrea
    • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2145
    • DOI: 10.1098/rsta.2017.0478

    Pump–probe experimental methodology at the Linac Coherent Light Source
    journal, April 2019

    • Glownia, James M.; Gumerlock, Karl; Lemke, Henrik T.
    • Journal of Synchrotron Radiation, Vol. 26, Issue 3
    • DOI: 10.1107/s160057751900225x

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.