DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet

Abstract

X-ray images from the Chandra X-ray Observatory show that the South-East jet in the Crab nebula changes direction every few years. This remarkable phenomenon is also observed in jets associated with pulsar wind nebulae and other astrophysical objects, and therefore is a fundamental feature of astrophysical jet evolution that needs to be understood. Theoretical modeling and numerical simulations have suggested that this phenomenon may be a consequence of magnetic fields (B) and current-driven magnetohydrodynamic (MHD) instabilities taking place in the jet, but until now there has been no verification of this process in a controlled laboratory environment. Here we report the first such experiments, using scaled laboratory plasma jets generated by high-power lasers to model the Crab jet and monoenergetic-proton radiography to provide direct visualization and measurement of magnetic fields and their behavior. The toroidal magnetic field embedded in the supersonic jet triggered plasma instabilities and resulted in considerable deflections throughout the jet propagation, mimicking the kinks in the Crab jet. We also demonstrated that these kinks are stabilized by high jet velocity, consistent with the observation that instabilities alter the jet orientation but do not disrupt the overall jet structure. We successfully modeled these laboratory experiments with a validatedmore » three-dimensional (3D) numerical simulation, which in conjunction with the experiments provide compelling evidence that we have an accurate model of the most important physics of magnetic fields and MHD instabilities in the observed, kinked jet in the Crab nebula. The experiments initiate a novel approach in the laboratory for visualizing fields and instabilities associated with jets observed in various astrophysical objects, ranging from stellar to extragalactic systems. We expect that future work along this line will have important impact on the study and understanding of such fundamental astrophysical phenomena.« less

Authors:
 [1];  [2];  [2];  [3];  [3];  [1];  [4];  [4];  [5];  [1];  [1];  [1];  [1];  [1];  [1];  [6];  [6];  [6];  [6];  [6] more »;  [4];  [4];  [7];  [7];  [8];  [9];  [9];  [10];  [11] « less
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
  2. Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics
  3. Univ. of Oxford (United Kingdom). Dept. of Physics
  4. Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Univ. of Rochester, NY (United States). Dept. of Physics and Astronomy
  5. Univ. Paris-Saclay, Gif-sur-Yvette (France). Ecole Polytechnique; Osaka Univ., Suita (Japan). Inst. of Laser Engineering
  6. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  7. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  8. Rice Univ., Houston, TX (United States). Dept. of Physics and Astronomy
  9. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Atmospheric, Ocean and Space Science
  10. Imperial College, London (United Kingdom). Blackett Lab.
  11. Univ. of York (United Kingdom). Dept. of Physics
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center, High Energy Density Physics Div.
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1475191
Alternate Identifier(s):
OSTI ID: 1328699
Report Number(s):
LLNL-JRNL-733818
Journal ID: ISSN 2041-1723; 885725
Grant/Contract Number:  
AC52-07NA27344; NA0002949; NA0002726; FG03-09NA29553; SC0007168; NA0000877; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal Issue: na; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Laser-produced plasmas; Astrophysical plasmas

Citation Formats

Li, C. K., Tzeferacos, P., Lamb, D., Gregori, G., Norreys, P. A., Rosenberg, M. J., Follett, R. K., Froula, D. H., Koenig, M., Seguin, F. H., Frenje, J. A., Rinderknecht, H. G., Sio, H., Zylstra, A. B., Petrasso, R. D., Amendt, P. A., Park, H. S., Remington, B. A., Ryutov, D. D., Wilks, S. C., Betti, R., Frank, A., Hu, S. X., Sangster, T. C., Hartigan, P., Drake, R. P., Kuranz, C. C., Lebedev, S. V., and Woolsey, N. C. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet. United States: N. p., 2016. Web. doi:10.1038/ncomms13081.
Li, C. K., Tzeferacos, P., Lamb, D., Gregori, G., Norreys, P. A., Rosenberg, M. J., Follett, R. K., Froula, D. H., Koenig, M., Seguin, F. H., Frenje, J. A., Rinderknecht, H. G., Sio, H., Zylstra, A. B., Petrasso, R. D., Amendt, P. A., Park, H. S., Remington, B. A., Ryutov, D. D., Wilks, S. C., Betti, R., Frank, A., Hu, S. X., Sangster, T. C., Hartigan, P., Drake, R. P., Kuranz, C. C., Lebedev, S. V., & Woolsey, N. C. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet. United States. https://doi.org/10.1038/ncomms13081
Li, C. K., Tzeferacos, P., Lamb, D., Gregori, G., Norreys, P. A., Rosenberg, M. J., Follett, R. K., Froula, D. H., Koenig, M., Seguin, F. H., Frenje, J. A., Rinderknecht, H. G., Sio, H., Zylstra, A. B., Petrasso, R. D., Amendt, P. A., Park, H. S., Remington, B. A., Ryutov, D. D., Wilks, S. C., Betti, R., Frank, A., Hu, S. X., Sangster, T. C., Hartigan, P., Drake, R. P., Kuranz, C. C., Lebedev, S. V., and Woolsey, N. C. Fri . "Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet". United States. https://doi.org/10.1038/ncomms13081. https://www.osti.gov/servlets/purl/1475191.
@article{osti_1475191,
title = {Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet},
author = {Li, C. K. and Tzeferacos, P. and Lamb, D. and Gregori, G. and Norreys, P. A. and Rosenberg, M. J. and Follett, R. K. and Froula, D. H. and Koenig, M. and Seguin, F. H. and Frenje, J. A. and Rinderknecht, H. G. and Sio, H. and Zylstra, A. B. and Petrasso, R. D. and Amendt, P. A. and Park, H. S. and Remington, B. A. and Ryutov, D. D. and Wilks, S. C. and Betti, R. and Frank, A. and Hu, S. X. and Sangster, T. C. and Hartigan, P. and Drake, R. P. and Kuranz, C. C. and Lebedev, S. V. and Woolsey, N. C.},
abstractNote = {X-ray images from the Chandra X-ray Observatory show that the South-East jet in the Crab nebula changes direction every few years. This remarkable phenomenon is also observed in jets associated with pulsar wind nebulae and other astrophysical objects, and therefore is a fundamental feature of astrophysical jet evolution that needs to be understood. Theoretical modeling and numerical simulations have suggested that this phenomenon may be a consequence of magnetic fields (B) and current-driven magnetohydrodynamic (MHD) instabilities taking place in the jet, but until now there has been no verification of this process in a controlled laboratory environment. Here we report the first such experiments, using scaled laboratory plasma jets generated by high-power lasers to model the Crab jet and monoenergetic-proton radiography to provide direct visualization and measurement of magnetic fields and their behavior. The toroidal magnetic field embedded in the supersonic jet triggered plasma instabilities and resulted in considerable deflections throughout the jet propagation, mimicking the kinks in the Crab jet. We also demonstrated that these kinks are stabilized by high jet velocity, consistent with the observation that instabilities alter the jet orientation but do not disrupt the overall jet structure. We successfully modeled these laboratory experiments with a validated three-dimensional (3D) numerical simulation, which in conjunction with the experiments provide compelling evidence that we have an accurate model of the most important physics of magnetic fields and MHD instabilities in the observed, kinked jet in the Crab nebula. The experiments initiate a novel approach in the laboratory for visualizing fields and instabilities associated with jets observed in various astrophysical objects, ranging from stellar to extragalactic systems. We expect that future work along this line will have important impact on the study and understanding of such fundamental astrophysical phenomena.},
doi = {10.1038/ncomms13081},
journal = {Nature Communications},
number = na,
volume = 7,
place = {United States},
year = {Fri Oct 07 00:00:00 EDT 2016},
month = {Fri Oct 07 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code
journal, October 2009


FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes
journal, November 2000

  • Fryxell, B.; Olson, K.; Ricker, P.
  • The Astrophysical Journal Supplement Series, Vol. 131, Issue 1
  • DOI: 10.1086/317361

Scaling of Magneto-Quantum-Radiative Hydrodynamic Equations: from Laser-Produced Plasmas to Astrophysics
journal, October 2014


Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena
journal, April 2000

  • Ryutov, D. D.; Drake, R. P.; Remington, B. A.
  • The Astrophysical Journal Supplement Series, Vol. 127, Issue 2
  • DOI: 10.1086/313320

Formation of dynamical structures in relativistic jets: the FRI case
journal, July 2008


On the Structure and Stability of Magnetic Tower jets
journal, September 2012


FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments
journal, December 2012


The X‐Ray Jet in the Crab Nebula: Radical Implications for Pulsar Theory?
journal, November 2001

  • Lyubarsky, Yury; Eichler, David
  • The Astrophysical Journal, Vol. 562, Issue 1
  • DOI: 10.1086/323436

The origin of peculiar jet-torus structure in the Crab nebula
journal, October 2003


Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers
journal, May 1999


Modelling the kinked jet of the Crab nebula
journal, October 2013

  • Mignone, A.; Striani, E.; Tavani, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 436, Issue 2
  • DOI: 10.1093/mnras/stt1632

Z ‐pinch instability with distributed current
journal, February 1984

  • Pereira, N. R.; Rostoker, N.; Pearlman, J. S.
  • Journal of Applied Physics, Vol. 55, Issue 3
  • DOI: 10.1063/1.333127

Modeling of supersonic jet formation in conical wire array Z -pinches
journal, April 2002


The Crab Nebula: Interpretation of Chandra observations
journal, June 2002

  • Bogovalov, S. V.; Khangoulyan, D. V.
  • Astronomy Letters, Vol. 28, Issue 6
  • DOI: 10.1134/1.1484137

Kink instabilities in jets from rotating magnetic fields
journal, September 2008


The Helical jet of the vela Pulsar
journal, January 2013

  • Durant, Martin; Kargaltsev, Oleg; Pavlov, George G.
  • The Astrophysical Journal, Vol. 763, Issue 2
  • DOI: 10.1088/0004-637X/763/2/72

Poynting Jets from Accretion Disks: Magnetohydrodynamic Simulations
journal, September 2000

  • Ustyugova, G. V.; Lovelace, R. V. E.; Romanova, M. M.
  • The Astrophysical Journal, Vol. 541, Issue 1
  • DOI: 10.1086/312890

Spectrometry of charged particles from inertial-confinement-fusion plasmas
journal, February 2003

  • Séguin, F. H.; Frenje, J. A.; Li, C. K.
  • Review of Scientific Instruments, Vol. 74, Issue 2
  • DOI: 10.1063/1.1518141

Modeling HEDLA magnetic field generation experiments on laser facilities
journal, March 2013


FLASH MHD simulations of experiments that study shock-generated magnetic fields
journal, December 2015


Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula
journal, June 2000

  • Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.
  • The Astrophysical Journal, Vol. 536, Issue 2
  • DOI: 10.1086/312733

Structure and Dynamics of Colliding Plasma Jets
journal, December 2013


[ITAL]Hubble Space Telescope[/ITAL] and [ITAL]Chandra[/ITAL] Monitoring of the Crab Synchrotron Nebula
journal, September 2002

  • Hester, J. J.; Mori, K.; Burrows, D.
  • The Astrophysical Journal, Vol. 577, Issue 1
  • DOI: 10.1086/344132

The X-Ray Spectrum of the Vela Pulsar Resolved with the [ITAL]Chandra X-Ray Observatory[/ITAL]
journal, May 2001

  • Pavlov, G. G.; Zavlin, V. E.; Sanwal, D.
  • The Astrophysical Journal, Vol. 552, Issue 2
  • DOI: 10.1086/320342

Invited Article: Relation between electric and magnetic field structures and their proton-beam images
journal, October 2012

  • Kugland, N. L.; Ryutov, D. D.; Plechaty, C.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4750234

Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system
journal, May 1996

  • Soures, J. M.; McCrory, R. L.; Verdon, C. P.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.871662

Magnetic tower outflows from a radial wire array Z-pinch
journal, July 2005


The Biermann Catastrophe in Numerical Magnetohydrodynamics
journal, March 2015


Three-Dimensional Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. ii. Relaxation of Pulsar wind Nebula
journal, January 2011

  • Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi
  • The Astrophysical Journal, Vol. 728, Issue 2
  • DOI: 10.1088/0004-637X/728/2/90

The Piecewise Parabolic Method (PPM) for gas-dynamical simulations
journal, April 1984


Laser ray tracing and power deposition on an unstructured three-dimensional grid
journal, January 2000


An HLLC Riemann solver for magneto-hydrodynamics
journal, February 2005


Magnetohydrodynamic model of Crab nebula radiation
journal, August 1984

  • Kennel, C. F.; Coroniti, F. V.
  • The Astrophysical Journal, Vol. 283
  • DOI: 10.1086/162357

Characterization of single and colliding laser-produced plasma bubbles using Thomson scattering and proton radiography
journal, November 2012


Measuring E and B Fields in Laser-Produced Plasmas with Monoenergetic Proton Radiography
journal, September 2006


Modeling HEDLA magnetic field generation experiments on laser facilities
journal, March 2013


Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula
journal, June 2000

  • Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.
  • The Astrophysical Journal, Vol. 536, Issue 2
  • DOI: 10.1086/312733

Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena
journal, April 2000

  • Ryutov, D. D.; Drake, R. P.; Remington, B. A.
  • The Astrophysical Journal Supplement Series, Vol. 127, Issue 2
  • DOI: 10.1086/313320

Charged-particle stopping powers in inertial confinement fusion plasmas
journal, May 1993


Kink instabilities in jets from rotating magnetic fields
text, January 2008


On the structure and stability of magnetic tower jets
text, January 2012


Works referencing / citing this record:

P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines
journal, July 2017


Experiments relevant to astrophysical jets
journal, September 2018


Experiments and models of MHD jets and their relevance to astrophysics and solar physics
journal, May 2018


The influence of the Hall term on the development of magnetized laser-produced plasma jets
journal, April 2018

  • Hamlin, N. D.; Seyler, C. E.; Khiar, B.
  • Physics of Plasmas, Vol. 25, Issue 4
  • DOI: 10.1063/1.5017202

Nonthermal ion acceleration by the kink instability in nonrelativistic jets
journal, July 2019

  • Alves, E. P.; Zrake, J.; Fiuza, F.
  • Physics of Plasmas, Vol. 26, Issue 7
  • DOI: 10.1063/1.5098478

Anomalous plasma acceleration in colliding high-power laser-produced plasmas
journal, September 2019

  • Morita, T.; Nagashima, K.; Edamoto, M.
  • Physics of Plasmas, Vol. 26, Issue 9
  • DOI: 10.1063/1.5100197

X-ray spectroscopy evidence for plasma shell formation in experiments modeling accretion columns in young stars
journal, November 2019

  • Filippov, E. D.; Skobelev, I. Yu.; Revet, G.
  • Matter and Radiation at Extremes, Vol. 4, Issue 6
  • DOI: 10.1063/1.5124350

Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas
journal, January 2020


Laboratory Analog of Heavy Jets Impacting a Denser Medium in Herbig–Haro (HH) Objects
journal, November 2018


Kinetic Particle-in-cell Simulations of the Transport of Astrophysical Relativistic Jets in Magnetized Intergalactic Medium
journal, April 2019


Analytic Model for the Time-dependent Electromagnetic Field of an Astrophysical Jet
journal, January 2020


Nonthermal ion acceleration by the kink instability in nonrelativistic jets
text, January 2019


Anomalous plasma acceleration in colliding high-power laser-produced plasmas
text, January 2019


Laboratory Study on Disconnection Events in Comets
journal, January 2018