skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries

Abstract

Na energy storage technology is strategically attractive for large scale applications such as grid energy storage. Here, we show that there is a clear relation between the Jahn-Teller activity of a transition metal ion at the end of charge and the mobility of Na in a cathode material. This is particularly important as mobility at the end of charge limits the capacity of current materials. Hence, by using this classical piece of physics in the battery world, it is possible to create higher capacity Na-cathode materials. Even more exciting is that the ideal element to impart this effect on cathodes is Fe, which is the least expensive of the transition metal oxides and can therefore enable low cost cathode materials.

Authors:
 [1];  [2];  [3];  [2];  [4];  [5]
  1. Harvard Univ., Cambridge, MA (United States). John A. Paulson School of Engineering and Applied Sciences
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1474967
Grant/Contract Number:  
AC02-05CH11231; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 28; Journal Issue: 18; Related Information: © 2016 American Chemical Society.; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE

Citation Formats

Li, Xin, Wang, Yan, Wu, Di, Liu, Lei, Bo, Shou-Hang, and Ceder, Gerbrand. Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries. United States: N. p., 2016. Web. doi:10.1021/acs.chemmater.6b02440.
Li, Xin, Wang, Yan, Wu, Di, Liu, Lei, Bo, Shou-Hang, & Ceder, Gerbrand. Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries. United States. doi:10.1021/acs.chemmater.6b02440.
Li, Xin, Wang, Yan, Wu, Di, Liu, Lei, Bo, Shou-Hang, and Ceder, Gerbrand. Tue . "Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries". United States. doi:10.1021/acs.chemmater.6b02440. https://www.osti.gov/servlets/purl/1474967.
@article{osti_1474967,
title = {Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries},
author = {Li, Xin and Wang, Yan and Wu, Di and Liu, Lei and Bo, Shou-Hang and Ceder, Gerbrand},
abstractNote = {Na energy storage technology is strategically attractive for large scale applications such as grid energy storage. Here, we show that there is a clear relation between the Jahn-Teller activity of a transition metal ion at the end of charge and the mobility of Na in a cathode material. This is particularly important as mobility at the end of charge limits the capacity of current materials. Hence, by using this classical piece of physics in the battery world, it is possible to create higher capacity Na-cathode materials. Even more exciting is that the ideal element to impart this effect on cathodes is Fe, which is the least expensive of the transition metal oxides and can therefore enable low cost cathode materials.},
doi = {10.1021/acs.chemmater.6b02440},
journal = {Chemistry of Materials},
number = 18,
volume = 28,
place = {United States},
year = {2016},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share: