DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Revealing the Intrinsic Li Mobility in the Li2MnO3 Lithium-Excess Material

Abstract

One of the most promising avenues for future high energy Li-ion batteries originate from the family of Li-rich layered cathodes. However, while exhibiting excellent initial capacity, these materials also suffer from voltage fade, high impedance, and poor rate capability, particularly in the Mn-rich, high Li excess concentration regime. Though it is clear that the Li2MnO3 component contributes to the high capacity as well as the chemical and structural degradation of the material, the inherent ionic conductivity of the material has not been clarified. Here, we investigate the delithiation mechanism, involving coherent Li migration from two layers by first-principles density functional theory. Surprisingly, and contrary to expectations from available experimental results, we find that the pristine material exhibits excellent Li mobility enabling facile Li extraction from both the transition metal layer and Li-layer. Generally, the Li-extractions are highly accelerated by di- and trivacancy clusters, which stabilize the saddle point tetrahedral sites. Hence, we deduce that the observed inferior rate behavior of this class of Li cathode materials is not due to intrinsic poor bulk ionic mobility, but more likely due to surface-passivation, structural deterioration, and/or particle-particle electrode-level transport limitations.

Authors:
 [1];  [1];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1474935
Grant/Contract Number:  
AC02-05CH11231; AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 28; Journal Issue: 7; Related Information: © 2016 American Chemical Society.; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Shin, Yongwoo, Ding, Hong, and Persson, Kristin A. Revealing the Intrinsic Li Mobility in the Li2MnO3 Lithium-Excess Material. United States: N. p., 2016. Web. doi:10.1021/acs.chemmater.5b04862.
Shin, Yongwoo, Ding, Hong, & Persson, Kristin A. Revealing the Intrinsic Li Mobility in the Li2MnO3 Lithium-Excess Material. United States. https://doi.org/10.1021/acs.chemmater.5b04862
Shin, Yongwoo, Ding, Hong, and Persson, Kristin A. Sat . "Revealing the Intrinsic Li Mobility in the Li2MnO3 Lithium-Excess Material". United States. https://doi.org/10.1021/acs.chemmater.5b04862. https://www.osti.gov/servlets/purl/1474935.
@article{osti_1474935,
title = {Revealing the Intrinsic Li Mobility in the Li2MnO3 Lithium-Excess Material},
author = {Shin, Yongwoo and Ding, Hong and Persson, Kristin A.},
abstractNote = {One of the most promising avenues for future high energy Li-ion batteries originate from the family of Li-rich layered cathodes. However, while exhibiting excellent initial capacity, these materials also suffer from voltage fade, high impedance, and poor rate capability, particularly in the Mn-rich, high Li excess concentration regime. Though it is clear that the Li2MnO3 component contributes to the high capacity as well as the chemical and structural degradation of the material, the inherent ionic conductivity of the material has not been clarified. Here, we investigate the delithiation mechanism, involving coherent Li migration from two layers by first-principles density functional theory. Surprisingly, and contrary to expectations from available experimental results, we find that the pristine material exhibits excellent Li mobility enabling facile Li extraction from both the transition metal layer and Li-layer. Generally, the Li-extractions are highly accelerated by di- and trivacancy clusters, which stabilize the saddle point tetrahedral sites. Hence, we deduce that the observed inferior rate behavior of this class of Li cathode materials is not due to intrinsic poor bulk ionic mobility, but more likely due to surface-passivation, structural deterioration, and/or particle-particle electrode-level transport limitations.},
doi = {10.1021/acs.chemmater.5b04862},
journal = {Chemistry of Materials},
number = 7,
volume = 28,
place = {United States},
year = {Sat Mar 12 00:00:00 EST 2016},
month = {Sat Mar 12 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 52 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-Rate LiFePO4 Electrode Material Synthesized by a Novel Route from FePO4 · 4H2O
journal, October 2006


High-Rate LiFePO 4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers
journal, December 2008

  • Huang, Yun-Hui; Goodenough, John B.
  • Chemistry of Materials, Vol. 20, Issue 23
  • DOI: 10.1021/cm8012304

High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries
journal, January 2005

  • Buqa, Hilmi; Goers, Dietrich; Holzapfel, Michael
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1851055

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material
journal, December 2011

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 24, Issue 1, p. 15-17
  • DOI: 10.1021/cm203303y

Manganese oxides for lithium batteries
journal, January 1997


Layered Cathode Materials Li[Ni[sub x]Li[sub (1/3−2x/3)]Mn[sub (2/3−x/3)]]O[sub 2] for Lithium-Ion Batteries
journal, January 2001

  • Lu, Zhonghua; MacNeil, D. D.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 11
  • DOI: 10.1149/1.1407994

Lithium metal rechargeable cells using Li2MnO3 as the positive electrode
journal, July 1999


Mechanism of Electrochemical Activity in Li 2 MnO 3
journal, May 2003

  • Robertson, Alastair D.; Bruce, Peter G.
  • Chemistry of Materials, Vol. 15, Issue 10
  • DOI: 10.1021/cm030047u

Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries
journal, March 2005

  • Thackeray, Michael M.; Johnson, Christopher S.; Vaughey, John T.
  • Journal of Materials Chemistry, Vol. 15, Issue 23, p. 2257-2267
  • DOI: 10.1039/b417616m

Structural Changes in Li 2 MnO 3 Cathode Material for Li-Ion Batteries
journal, December 2013

  • Rana, Jatinkumar; Stan, Marian; Kloepsch, Richard
  • Advanced Energy Materials, Vol. 4, Issue 5
  • DOI: 10.1002/aenm.201300998

The origins and mechanism of phase transformation in bulk Li 2 MnO 3 : first-principles calculations and experimental studies
journal, January 2015

  • Lim, Jin-Myoung; Kim, Duho; Lim, Young-Geun
  • Journal of Materials Chemistry A, Vol. 3, Issue 13
  • DOI: 10.1039/C5TA00944H

First-charge instabilities of layered-layered lithium-ion-battery materials
journal, January 2015

  • Croy, Jason R.; Iddir, Hakim; Gallagher, Kevin
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 37
  • DOI: 10.1039/C5CP02943K

Materials Challenges and Opportunities of Lithium Ion Batteries
journal, January 2011

  • Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 3
  • DOI: 10.1021/jz1015422

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study
journal, January 2011

  • Xu, Bo; Fell, Christopher R.; Chi, Miaofang
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01131f

Sodium substitution for partial lithium to significantly enhance the cycling stability of Li 2 MnO 3 cathode material
journal, December 2013


Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.55−0.5z)O2−zFz cathode materials for Li-ion secondary batteries
journal, August 2005


Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation
journal, August 2013


The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes
journal, October 2004


Positive Electrode Materials for Li-Ion and Li-Batteries
journal, February 2010

  • Ellis, Brian L.; Lee, Kyu Tae; Nazar, Linda F.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm902696j

A review of advanced and practical lithium battery materials
journal, January 2011

  • Marom, Rotem; Amalraj, S. Francis; Leifer, Nicole
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04225k

Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3·(1−x)Li1+yMn2−yO4 (0<x<1, 0⩽y⩽0.33) for lithium batteries
journal, May 2005


Solid State NMR Studies of Li 2 MnO 3 and Li-Rich Cathode Materials: Proton Insertion, Local Structure, and Voltage Fade
journal, November 2014

  • Dogan, Fulya; Croy, Jason R.; Balasubramanian, Mahalingam
  • Journal of The Electrochemical Society, Vol. 162, Issue 1
  • DOI: 10.1149/2.1041501jes

Structural and Chemical Evolution of the Layered Li-Excess Li x MnO 3 as a Function of Li Content from First-Principles Calculations
journal, June 2014


Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides
journal, January 2014

  • Qian, Danna; Xu, Bo; Chi, Miaofang
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 28
  • DOI: 10.1039/C4CP01799D

Operando X-ray Absorption Study of the Redox Processes Involved upon Cycling of the Li-Rich Layered Oxide Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2 in Li Ion Batteries
journal, March 2014

  • Koga, H.; Croguennec, L.; Ménétrier, M.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11
  • DOI: 10.1021/jp412197z

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Unexpected Voltage Fade in LMR-NMC Oxides Cycled below the “Activation” Plateau
journal, November 2014

  • Li, Yan; Bareño, Javier; Bettge, Martin
  • Journal of The Electrochemical Society, Vol. 162, Issue 1
  • DOI: 10.1149/2.0741501jes

Towards low-cost, high energy density Li 2 MnO 3 cathode materials
journal, January 2015

  • Dong, Xin; Xu, Youlong; Yan, Shen
  • Journal of Materials Chemistry A, Vol. 3, Issue 2
  • DOI: 10.1039/C4TA02924K

Electrochemical kinetics of the 0.5Li2MnO3·0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries
journal, January 2012

  • Yu, Haijun; Wang, Yarong; Asakura, Daisuke
  • RSC Advances, Vol. 2, Issue 23
  • DOI: 10.1039/c2ra20772a

High-Energy Cathode Materials (Li 2 MnO 3 –LiMO 2 ) for Lithium-Ion Batteries
journal, March 2013

  • Yu, Haijun; Zhou, Haoshen
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 8
  • DOI: 10.1021/jz400032v

Structural, Electrical, and Lithium Ion Dynamics of Li 2 MnO 3 from Density Functional Theory
journal, January 2015


Lithium diffusion mechanisms in layered intercalation compounds
journal, July 2001


Understanding Li Diffusion in Li-Intercalation Compounds
journal, May 2012

  • Van der Ven, Anton; Bhattacharya, Jishnu; Belak, Anna A.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar200329r

Density Functional Investigation on Li 2 MnO 3
journal, October 2012

  • Xiao, Ruijuan; Li, Hong; Chen, Liquan
  • Chemistry of Materials, Vol. 24, Issue 21
  • DOI: 10.1021/cm3027219

Atomic Structure of Li 2 MnO 3 after Partial Delithiation and Re-Lithiation
journal, June 2013


Lithium Diffusion in Layered Li[sub x]CoO[sub 2]
journal, January 1999

  • Van der Ven, A.
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 7
  • DOI: 10.1149/1.1391130

Nudged elastic band method for finding minimum energy paths of transitions
conference, November 2011

  • JÓNsson, Hannes; Mills, Greg; Jacobsen, Karsten W.
  • Proceedings of the International School of Physics, Classical and Quantum Dynamics in Condensed Phase Simulations
  • DOI: 10.1142/9789812839664_0016

First-principles theory of ionic diffusion with nondilute carriers
journal, October 2001


Electrodes: The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes (Adv. Energy Mater. 13/2014)
journal, September 2014

  • Urban, Alexander; Lee, Jinhyuk; Ceder, Gerbrand
  • Advanced Energy Materials, Vol. 4, Issue 13
  • DOI: 10.1002/aenm.201470069

Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations
journal, September 2014

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 26, Issue 18
  • DOI: 10.1021/cm501563f

Probing the Degradation Mechanism of Li 2 MnO 3 Cathode for Li-Ion Batteries
journal, January 2015

  • Yan, Pengfei; Xiao, Liang; Zheng, Jianming
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm504257m

Li Conductivity in Li[sub x]MPO[sub 4] (M = Mn, Fe, Co, Ni) Olivine Materials
journal, January 2004

  • Morgan, D.; Van der Ven, A.; Ceder, G.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 2
  • DOI: 10.1149/1.1633511

First-principles study of competing mechanisms of nondilute Li diffusion in spinel Li x TiS 2
journal, April 2011


Effect of High Voltage on the Structure and Electrochemistry of LiNi 0.5 Mn 0.5 O 2 :  A Joint Experimental and Theoretical Study
journal, October 2006

  • Bréger, Julien; Meng, Ying S.; Hinuma, Yoyo
  • Chemistry of Materials, Vol. 18, Issue 20
  • DOI: 10.1021/cm060886r

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

First-Cycle Evolution of Local Structure in Electrochemically Activated Li 2 MnO 3
journal, December 2014

  • Croy, Jason R.; Park, Joong Sun; Dogan, Fulya
  • Chemistry of Materials, Vol. 26, Issue 24
  • DOI: 10.1021/cm5039792

Correlating Local Structure with Electrochemical Activity in Li 2 MnO 3
journal, July 2015

  • Ruther, Rose E.; Dixit, Hemant; Pezeshki, Alan M.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 32
  • DOI: 10.1021/acs.jpcc.5b03900

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Electron Microscopy for the Fine Needle Aspiration of Tumours: A Primer
journal, November 1998


Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators
journal, August 1995


First-principles prediction of redox potentials in transition-metal compounds with LDA + U
journal, December 2004


Works referencing / citing this record:

Systematic evaluation of lithium-excess polyanionic compounds as multi-electron reaction cathodes
journal, January 2019

  • Li, Ruhong; Liu, Jianchao; Chen, Tianrui
  • Nanoscale, Vol. 11, Issue 36
  • DOI: 10.1039/c9nr05751j

Lithium diffusion study in Li 2 MnO 3 and Li 1.17 Ni 0.17 Mn 0.67 O 2 : a combined experimental and computational approach
journal, January 2017

  • Sarkar, Tanmay; Prakasha, Kunkanadu R.; Bharadwaj, Mridula Dixit
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 47
  • DOI: 10.1039/c7cp06458f

Layer‐Based Heterostructured Cathodes for Lithium‐Ion and Sodium‐Ion Batteries
journal, February 2019

  • Deng, Ya‐Ping; Wu, Zhen‐Guo; Liang, Ruilin
  • Advanced Functional Materials, Vol. 29, Issue 19
  • DOI: 10.1002/adfm.201808522