skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries

Abstract

Non-aqueous Mg-ion batteries offer a promising way to overcome safety, costs, and energy density limitations of state-of-the-art Li-ion battery technology. Here, we present a rigorous analysis of the magnesium aluminum chloride complex (MACC) in tetrahydrofuran (THF), one of the few electrolytes that can reversibly plate and strip Mg. We use ab initio calculations and classical molecular dynamics simulations to interrogate the MACC electrolyte composition with the goal of addressing two urgent questions that have puzzled battery researchers: (i) the functional species of the electrolyte, and (ii) the complex equilibria regulating the MACC speciation after prolonged electrochemical cycling, a process termed as conditioning, and after prolonged inactivity, a process called aging. A general computational strategy to untangle the complex structure of electrolytes, ionic liquids and other liquid media is presented. The analysis of formation energies and grand-potential phase diagrams of Mg–Al–Cl–THF suggests that the MACC electrolyte bears a simple chemical structure with few simple constituents, namely the electro-active species MgCl + and AlCl 4- in equilibrium with MgCl 2 and AlCl 3. Knowledge of the stable species of the MACC electrolyte allows us to determine the most important equilibria occurring during electrochemical cycling. We observe that Al deposition is always preferredmore » to Mg deposition, explaining why freshly synthesized MACC cannot operate and needs to undergo preparatory conditioning. Similarly, we suggest that aluminum displacement and depletion from the solution upon electrolyte resting (along with continuous MgCl 2 regeneration) represents one of the causes of electrolyte aging. Finally, we compute the NMR shifts from shielding tensors of selected molecules and ions providing fingerprints to guide future experimental investigations.« less

Authors:
 [1];  [2];  [3];  [4];  [2]; ORCiD logo [1];  [3];  [4];  [5]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Joint Center for Energy Storage Research (JCESR) and Scientific User Facilities Division
OSTI Identifier:
1474898
Grant/Contract Number:  
AC02-05CH11231; 3F-31144
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 8; Journal Issue: 12; Related Information: © 2015 The Royal Society of Chemistry.; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE

Citation Formats

Canepa, Pieremanuele, Jayaraman, Saivenkataraman, Cheng, Lei, Rajput, Nav Nidhi, Richards, William D., Gautam, Gopalakrishnan Sai, Curtiss, Larry A., Persson, Kristin A., and Ceder, Gerbrand. Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries. United States: N. p., 2015. Web. doi:10.1039/c5ee02340h.
Canepa, Pieremanuele, Jayaraman, Saivenkataraman, Cheng, Lei, Rajput, Nav Nidhi, Richards, William D., Gautam, Gopalakrishnan Sai, Curtiss, Larry A., Persson, Kristin A., & Ceder, Gerbrand. Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries. United States. doi:10.1039/c5ee02340h.
Canepa, Pieremanuele, Jayaraman, Saivenkataraman, Cheng, Lei, Rajput, Nav Nidhi, Richards, William D., Gautam, Gopalakrishnan Sai, Curtiss, Larry A., Persson, Kristin A., and Ceder, Gerbrand. Tue . "Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries". United States. doi:10.1039/c5ee02340h. https://www.osti.gov/servlets/purl/1474898.
@article{osti_1474898,
title = {Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries},
author = {Canepa, Pieremanuele and Jayaraman, Saivenkataraman and Cheng, Lei and Rajput, Nav Nidhi and Richards, William D. and Gautam, Gopalakrishnan Sai and Curtiss, Larry A. and Persson, Kristin A. and Ceder, Gerbrand},
abstractNote = {Non-aqueous Mg-ion batteries offer a promising way to overcome safety, costs, and energy density limitations of state-of-the-art Li-ion battery technology. Here, we present a rigorous analysis of the magnesium aluminum chloride complex (MACC) in tetrahydrofuran (THF), one of the few electrolytes that can reversibly plate and strip Mg. We use ab initio calculations and classical molecular dynamics simulations to interrogate the MACC electrolyte composition with the goal of addressing two urgent questions that have puzzled battery researchers: (i) the functional species of the electrolyte, and (ii) the complex equilibria regulating the MACC speciation after prolonged electrochemical cycling, a process termed as conditioning, and after prolonged inactivity, a process called aging. A general computational strategy to untangle the complex structure of electrolytes, ionic liquids and other liquid media is presented. The analysis of formation energies and grand-potential phase diagrams of Mg–Al–Cl–THF suggests that the MACC electrolyte bears a simple chemical structure with few simple constituents, namely the electro-active species MgCl+ and AlCl4- in equilibrium with MgCl2 and AlCl3. Knowledge of the stable species of the MACC electrolyte allows us to determine the most important equilibria occurring during electrochemical cycling. We observe that Al deposition is always preferred to Mg deposition, explaining why freshly synthesized MACC cannot operate and needs to undergo preparatory conditioning. Similarly, we suggest that aluminum displacement and depletion from the solution upon electrolyte resting (along with continuous MgCl2 regeneration) represents one of the causes of electrolyte aging. Finally, we compute the NMR shifts from shielding tensors of selected molecules and ions providing fingerprints to guide future experimental investigations.},
doi = {10.1039/c5ee02340h},
journal = {Energy & Environmental Science},
number = 12,
volume = 8,
place = {United States},
year = {2015},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 53 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Understanding the Initial Stages of Reversible Mg Deposition and Stripping in Inorganic Nonaqueous Electrolytes
journal, April 2015


Tetrahydrofuran: vibrational assignment, chemical thermodynamic properties, and vapor pressure
journal, November 1970


Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations
journal, January 2015

  • Liu, Miao; Rong, Ziqin; Malik, Rahul
  • Energy & Environmental Science, Vol. 8, Issue 3
  • DOI: 10.1039/C4EE03389B

Structural Analysis of Electrolyte Solutions for Rechargeable Mg Batteries by Stereoscopic Means and DFT Calculations
journal, April 2011

  • Pour, Nir; Gofer, Yossi; Major, Dan T.
  • Journal of the American Chemical Society, Vol. 133, Issue 16
  • DOI: 10.1021/ja1098512

Electrolytic Conditioning of a Magnesium Aluminum Chloride Complex for Reversible Magnesium Deposition
journal, November 2014

  • Barile, Christopher J.; Barile, Elizabeth C.; Zavadil, Kevin R.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 48
  • DOI: 10.1021/jp506951b

Refined Method for Predicting Electrochemical Windows of Ionic Liquids and Experimental Validation Studies
journal, May 2014

  • Zhang, Yong; Shi, Chaojun; Brennecke, Joan F.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 23
  • DOI: 10.1021/jp5034257

Automatic atom type and bond type perception in molecular mechanical calculations
journal, October 2006

  • Wang, Junmei; Wang, Wei; Kollman, Peter A.
  • Journal of Molecular Graphics and Modelling, Vol. 25, Issue 2
  • DOI: 10.1016/j.jmgm.2005.12.005

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance
journal, November 2013

  • Shao, Yuyan; Liu, Tianbiao; Li, Guosheng
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03130

Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy
journal, December 2000

  • Cohen, Yaron S.; Cohen, Yair; Aurbach, Doron
  • The Journal of Physical Chemistry B, Vol. 104, Issue 51
  • DOI: 10.1021/jp002526b

Prototype systems for rechargeable magnesium batteries
journal, October 2000

  • Aurbach, D.; Lu, Z.; Schechter, A.
  • Nature, Vol. 407, Issue 6805, p. 724-727
  • DOI: 10.1038/35037553

Effect of Electrolytic Properties of a Magnesium Organohaloaluminate Electrolyte on Magnesium Deposition
journal, December 2013

  • Benmayza, Aadil; Ramanathan, Mayandi; Arthur, Timothy S.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 51, p. 26881-26888
  • DOI: 10.1021/jp4077068

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations
journal, June 2011

  • Ong, Shyue Ping; Andreussi, Oliviero; Wu, Yabi
  • Chemistry of Materials, Vol. 23, Issue 11
  • DOI: 10.1021/cm200679y

Development and testing of a general amber force field
journal, January 2004

  • Wang, Junmei; Wolf, Romain M.; Caldwell, James W.
  • Journal of Computational Chemistry, Vol. 25, Issue 9
  • DOI: 10.1002/jcc.20035

Mg rechargeable batteries: an on-going challenge
journal, January 2013

  • Yoo, Hyun Deog; Shterenberg, Ivgeni; Gofer, Yosef
  • Energy & Environmental Science, Vol. 6, Issue 8, p. 2265-2279
  • DOI: 10.1039/c3ee40871j

Crystal structure of the ethyl Grignard reagent, ethylmagnesium bromide dietherate
journal, September 1968

  • Guggenberger, L. J.; Rundle, R. E.
  • Journal of the American Chemical Society, Vol. 90, Issue 20
  • DOI: 10.1021/ja01022a007

The challenge of developing rechargeable magnesium batteries
journal, May 2014

  • Shterenberg, Ivgeni; Salama, Michael; Gofer, Yossi
  • MRS Bulletin, Vol. 39, Issue 5
  • DOI: 10.1557/mrs.2014.61

The magnesium and magnesium amalgam electrodes in aprotic organic solvents a kinetic study
journal, May 1985


Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries
journal, January 2014

  • Doe, Robert E.; Han, Ruoban; Hwang, Jaehee
  • Chemical Communications, Vol. 50, Issue 2, p. 243-245
  • DOI: 10.1039/C3CC47896C

Quantum Mechanical Continuum Solvation Models
journal, August 2005

  • Tomasi, Jacopo; Mennucci, Benedetta; Cammi, Roberto
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr9904009

Spectroelectrochemical studies of magnesium deposition by in situ FTIR spectroscopy
journal, May 2001


Grignard reagent formation
journal, April 2004


A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model
journal, October 1993

  • Bayly, Christopher I.; Cieplak, Piotr; Cornell, Wendy
  • The Journal of Physical Chemistry, Vol. 97, Issue 40
  • DOI: 10.1021/j100142a004

Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations
journal, November 1990

  • Wolinski, Krzysztof; Hinton, James F.; Pulay, Peter
  • Journal of the American Chemical Society, Vol. 112, Issue 23
  • DOI: 10.1021/ja00179a005

Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery
journal, August 2012

  • Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S.
  • Angewandte Chemie International Edition, Vol. 51, Issue 39, p. 9780-9783
  • DOI: 10.1002/anie.201204913

Structure of Liquid Aluminum Oxide
journal, January 1997

  • Ansell, Stuart; Krishnan, Shankar; Weber, J. K. Richard
  • Physical Review Letters, Vol. 78, Issue 3
  • DOI: 10.1103/PhysRevLett.78.464

Electrolyte Solutions for Rechargeable Magnesium Batteries Based on Organomagnesium Chloroaluminate Complexes
journal, January 2002

  • Aurbach, Doron; Gizbar, Haim; Schechter, Alex
  • Journal of The Electrochemical Society, Vol. 149, Issue 2, p. A115-A121
  • DOI: 10.1149/1.1429925

Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents
journal, January 2013

  • Okoshi, Masaki; Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.074311jes

The Solvation Structure of Mg Ions in Dichloro Complex Solutions from First-Principles Molecular Dynamics and Simulated X-ray Absorption Spectra
journal, October 2014

  • Wan, Liwen F.; Prendergast, David
  • Journal of the American Chemical Society, Vol. 136, Issue 41
  • DOI: 10.1021/ja505967u

The unexpected discovery of the Mg(HMDS) 2 /MgCl 2 complex as a magnesium electrolyte for rechargeable magnesium batteries
journal, January 2015

  • Liao, Chen; Sa, Niya; Key, Baris
  • Journal of Materials Chemistry A, Vol. 3, Issue 11
  • DOI: 10.1039/C5TA00118H

Structure and compatibility of a magnesium electrolyte with a sulphur cathode
journal, August 2011

  • Kim, Hee Soo; Arthur, Timothy S.; Allred, Gary D.
  • Nature Communications, Vol. 2, Article No. 427
  • DOI: 10.1038/ncomms1435

The Structure of the First Coordination Shell in Liquid Water
journal, May 2004


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Alkyl Group Transmetalation Reactions in Electrolytic Solutions Studied by Multinuclear NMR
journal, August 2004

  • Gizbar, Haim; Vestfrid, Yulia; Chusid, Orit
  • Organometallics, Vol. 23, Issue 16
  • DOI: 10.1021/om049949a

Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries
journal, January 2008

  • Mizrahi, Oren; Amir, Nir; Pollak, Elad
  • Journal of The Electrochemical Society, Vol. 155, Issue 2, p. A103-A109
  • DOI: 10.1149/1.2806175

A fundamental study on the [(μ-Cl) 3 Mg 2 (THF) 6 ] + dimer electrolytes for rechargeable Mg batteries
journal, January 2015

  • Liu, Tianbiao; Cox, Jonathan T.; Hu, Dehong
  • Chemical Communications, Vol. 51, Issue 12
  • DOI: 10.1039/C4CC07621D

The Coupling between Stability and Ion Pair Formation in Magnesium Electrolytes from First-Principles Quantum Mechanics and Classical Molecular Dynamics
journal, February 2015

  • Rajput, Nav Nidhi; Qu, Xiaohui; Sa, Niya
  • Journal of the American Chemical Society, Vol. 137, Issue 9, p. 3411-3420
  • DOI: 10.1021/jacs.5b01004

Complex Structures and Electrochemical Properties of Magnesium Electrolytes
journal, January 2008

  • Nakayama, Yuri; Kudo, Yoshihiro; Oki, Hideki
  • Journal of The Electrochemical Society, Vol. 155, Issue 10
  • DOI: 10.1149/1.2956022

Boron Clusters as Highly Stable Magnesium-Battery Electrolytes
journal, February 2014

  • Carter, Tyler J.; Mohtadi, Rana; Arthur, Timothy S.
  • Angewandte Chemie International Edition, Vol. 53, Issue 12
  • DOI: 10.1002/anie.201310317

Li−Fe−P−O 2 Phase Diagram from First Principles Calculations
journal, February 2008

  • Ong, Shyue Ping; Wang, Lei; Kang, Byoungwoo
  • Chemistry of Materials, Vol. 20, Issue 5
  • DOI: 10.1021/cm702327g

The rechargeable revolution: A better battery
journal, March 2014


An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries
journal, May 2015

  • Tutusaus, Oscar; Mohtadi, Rana; Arthur, Timothy S.
  • Angewandte Chemie International Edition, Vol. 54, Issue 27
  • DOI: 10.1002/anie.201412202

A Single-Crystal Model for MgCl 2 –Electron Donor Support Materials: [Mg 3 Cl 5 (THF) 4 Bu] 2 (Bu = n -Butyl)
journal, July 2013

  • Pirinen, Sami; Koshevoy, Igor O.; Denifl, Peter
  • Organometallics, Vol. 32, Issue 15
  • DOI: 10.1021/om400407p

Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond
journal, October 2014

  • Muldoon, John; Bucur, Claudiu B.; Gregory, Thomas
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500049y

Nonaqueous Electrochemistry of Magnesium
journal, January 1990

  • Gregory, Thomas D.; Hoffman, Ronald J.; Winterton, Richard C.
  • Journal of The Electrochemical Society, Vol. 137, Issue 3, p. 775-780
  • DOI: 10.1149/1.2086553

Electrolyte roadblocks to a magnesium rechargeable battery
journal, January 2012

  • Muldoon, John; Bucur, Claudiu B.; Oliver, Allen G.
  • Energy & Environmental Science, Vol. 5, Issue 3, p. 5941-5950
  • DOI: 10.1039/c2ee03029b

Investigating the Reversibility of in Situ Generated Magnesium Organohaloaluminates for Magnesium Deposition and Dissolution
journal, May 2014

  • Barile, Christopher J.; Spatney, Russell; Zavadil, Kevin R.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 20
  • DOI: 10.1021/jp503506c

    Works referencing / citing this record:

    A highly stable polyoxometalate-based metal–organic framework with π–π stacking for enhancing lithium ion battery performance
    journal, January 2017

    • Huang, Qing; Wei, Tao; Zhang, Mi
    • Journal of Materials Chemistry A, Vol. 5, Issue 18
    • DOI: 10.1039/c7ta00900c