DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies

Abstract

Summary Duckweeds are the fastest growing angiosperms and have the potential to become a new generation of sustainable crops. Although a seed plant, Spirodela polyrhiza clones rarely flower and multiply mainly through vegetative propagation. Whole‐genome sequencing using different approaches and clones yielded two reference maps. One for clone 9509, supported in its assembly by optical mapping of single DNA molecules, and one for clone 7498, supported by cytogenetic assignment of 96 fingerprinted bacterial artificial chromosomes ( BAC s) to its 20 chromosomes. However, these maps differ in the composition of several individual chromosome models. We validated both maps further to resolve these differences and addressed whether they could be due to chromosome rearrangements in different clones. For this purpose, we applied sequential multicolor fluorescence in situ hybridization (mc FISH ) to seven S. polyrhiza clones, using 106 BAC s that were mapped onto the 39 pseudomolecules for clone 7498. Furthermore we integrated high‐depth Oxford Nanopore ( ON ) sequence data for clone 9509 to validate and revise the previously assembled chromosome models. We found no major structural rearrangements between these seven clones, identified seven chimeric pseudomolecules and Illumina assembly errors in the previous maps, respectively. A new S. polyrhiza genome map withmore » high contiguity was produced with the ON sequence data and genome‐wide synteny analysis supported the occurrence of two Whole Genome Duplication events during its evolution. This work generated a high confidence genome map for S. polyrhiza at the chromosome scale , and illustrates the complementarity of independent approaches to produce whole‐genome assemblies in the absence of a genetic map.« less

Authors:
 [1];  [2];  [3];  [3];  [2];  [4]; ORCiD logo [5]; ORCiD logo [3]
  1. Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) (Germany); Dalat University (Vietnam)
  2. J. Craig Venter Institute, Carlsbad, CA (United States)
  3. Rutgers Univ., New Brunswick, NJ (United States)
  4. Friedrich Schiller Univ., Jena (Germany)
  5. Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) (Germany)
Publication Date:
Research Org.:
Cold Spring Harbor Laboratory Cold Spring Harbor, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1612897
Alternate Identifier(s):
OSTI ID: 1474786
Grant/Contract Number:  
SC0018244; DE‐SC0018244
Resource Type:
Accepted Manuscript
Journal Name:
The Plant Journal
Additional Journal Information:
Journal Volume: 96; Journal Issue: 3; Journal ID: ISSN 0960-7412
Publisher:
Society for Experimental Biology
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Plant Sciences; Spirodela polyrhiza, duckweeds; multicolor-FISH; optical map; cytogenetic map; Oxford Nanopore sequencing; syntenous regions

Citation Formats

Hoang, Phuong N. T., Michael, Todd P., Gilbert, Sarah, Chu, Philomena, Motley, S. Timothy, Appenroth, Klaus J., Schubert, Ingo, and Lam, Eric. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. United States: N. p., 2018. Web. doi:10.1111/tpj.14049.
Hoang, Phuong N. T., Michael, Todd P., Gilbert, Sarah, Chu, Philomena, Motley, S. Timothy, Appenroth, Klaus J., Schubert, Ingo, & Lam, Eric. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. United States. https://doi.org/10.1111/tpj.14049
Hoang, Phuong N. T., Michael, Todd P., Gilbert, Sarah, Chu, Philomena, Motley, S. Timothy, Appenroth, Klaus J., Schubert, Ingo, and Lam, Eric. Fri . "Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies". United States. https://doi.org/10.1111/tpj.14049. https://www.osti.gov/servlets/purl/1612897.
@article{osti_1612897,
title = {Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies},
author = {Hoang, Phuong N. T. and Michael, Todd P. and Gilbert, Sarah and Chu, Philomena and Motley, S. Timothy and Appenroth, Klaus J. and Schubert, Ingo and Lam, Eric},
abstractNote = {Summary Duckweeds are the fastest growing angiosperms and have the potential to become a new generation of sustainable crops. Although a seed plant, Spirodela polyrhiza clones rarely flower and multiply mainly through vegetative propagation. Whole‐genome sequencing using different approaches and clones yielded two reference maps. One for clone 9509, supported in its assembly by optical mapping of single DNA molecules, and one for clone 7498, supported by cytogenetic assignment of 96 fingerprinted bacterial artificial chromosomes ( BAC s) to its 20 chromosomes. However, these maps differ in the composition of several individual chromosome models. We validated both maps further to resolve these differences and addressed whether they could be due to chromosome rearrangements in different clones. For this purpose, we applied sequential multicolor fluorescence in situ hybridization (mc FISH ) to seven S. polyrhiza clones, using 106 BAC s that were mapped onto the 39 pseudomolecules for clone 7498. Furthermore we integrated high‐depth Oxford Nanopore ( ON ) sequence data for clone 9509 to validate and revise the previously assembled chromosome models. We found no major structural rearrangements between these seven clones, identified seven chimeric pseudomolecules and Illumina assembly errors in the previous maps, respectively. A new S. polyrhiza genome map with high contiguity was produced with the ON sequence data and genome‐wide synteny analysis supported the occurrence of two Whole Genome Duplication events during its evolution. This work generated a high confidence genome map for S. polyrhiza at the chromosome scale , and illustrates the complementarity of independent approaches to produce whole‐genome assemblies in the absence of a genetic map.},
doi = {10.1111/tpj.14049},
journal = {The Plant Journal},
number = 3,
volume = 96,
place = {United States},
year = {Fri Sep 28 00:00:00 EDT 2018},
month = {Fri Sep 28 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 44 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

FISH mapping and molecular organization of the major repetitive sequences of tomato
journal, August 2008


Physical mapping of 5S and 45S rDNA in Chrysanthemum and related genera of the Anthemideae by FISH, and species relationships
journal, August 2012


Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella
journal, December 2013


The phylogenetic potential of entire 26S rDNA sequences in plants
journal, March 1998


Versatile and open software for comparing large genomes
journal, January 2004

  • Kurtz, Stefan; Phillippy, Adam; Delcher, Arthur L.
  • Genome Biology, Vol. 5, Issue 2, R12
  • DOI: 10.1186/gb-2004-5-2-r12

Duckweeds (Lemnaceae family): a potential source of protein and amino acids
journal, July 1980

  • Rusoff, Louis L.; Blakeney, Ernest W.; Culley, Dudley D.
  • Journal of Agricultural and Food Chemistry, Vol. 28, Issue 4
  • DOI: 10.1021/jf60230a040

Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production
journal, January 2018

  • Ma, Y. B.; Zhu, M.; Yu, C. J.
  • Plant Biology, Vol. 20, Issue 2
  • DOI: 10.1111/plb.12679

Evaluation of phylogenetic relationships in Lemnaceae using nuclear ribosomal data
journal, June 2014

  • Tippery, N. P.; Les, D. H.; Crawford, D. J.
  • Plant Biology, Vol. 17
  • DOI: 10.1111/plb.12203

Taxonomy of duckweeds (Lemnaceae), potential new crop plants
journal, January 2016

  • Sree, K.; Bog, Manuela; Appenroth, Klaus
  • Emirates Journal of Food and Agriculture, Vol. 28, Issue 5
  • DOI: 10.9755/ejfa.2016-01-038

Unbiased K-mer Analysis Reveals Changes in Copy Number of Highly Repetitive Sequences During Maize Domestication and Improvement
journal, February 2017

  • Liu, Sanzhen; Zheng, Jun; Migeon, Pierre
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep42444

Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences
journal, March 2016


The Amborella Genome and the Evolution of Flowering Plants
journal, December 2013


Ribosomal RNA gene repeats, their stability and cellular senescence
journal, January 2014

  • Kobayashi, Takehiko
  • Proceedings of the Japan Academy, Series B, Vol. 90, Issue 4
  • DOI: 10.2183/pjab.90.119

Arsenic Uptake by Lemna minor in Hydroponic System
journal, March 2014

  • Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti
  • International Journal of Phytoremediation, Vol. 16, Issue 12
  • DOI: 10.1080/15226514.2013.821452

After the genome sequencing of duckweed - how to proceed with research on the fastest growing angiosperm?
journal, January 2015

  • Appenroth, K. -J.; Crawford, D. J.; Les, D. H.
  • Plant Biology, Vol. 17
  • DOI: 10.1111/plb.12248

Bioremediation of an Iron-Rich Mine Effluent by Lemna minor
journal, March 2014

  • Teixeira, S.; Vieira, M. N.; Marques, J. Espinha
  • International Journal of Phytoremediation, Vol. 16, Issue 12
  • DOI: 10.1080/15226514.2013.821454

Organization of the 5S rRNA genes in the soybean Glycine max (L.) Merrill and conservation of the 5S rDNA repeat structure in higher plants
journal, August 1990

  • Gottlob-McHugh, S. G.; Lévesque, M.; MacKenzie, K.
  • Genome, Vol. 33, Issue 4
  • DOI: 10.1139/g90-072

Cadmium Removal by Lemna minor and Spirodela polyrhiza
journal, February 2014

  • Chaudhuri, Devaleena; Majumder, Arunabha; Misra, Amal K.
  • International Journal of Phytoremediation, Vol. 16, Issue 11
  • DOI: 10.1080/15226514.2013.821446

Integrative genomics viewer
journal, January 2011

  • Robinson, James T.; Thorvaldsdóttir, Helga; Winckler, Wendy
  • Nature Biotechnology, Vol. 29, Issue 1
  • DOI: 10.1038/nbt.1754

Improved telomere detection using a telomere repeat probe (TTAGGG) n generated by PCR
journal, January 1991

  • IJdo, J. W.; Wells, R. A.; Baldini, A.
  • Nucleic Acids Research, Vol. 19, Issue 17
  • DOI: 10.1093/nar/19.17.4780

Evolution of Genome Size in Duckweeds ( Lemnaceae )
journal, July 2011

  • Wang, Wenqin; Kerstetter, Randall A.; Michael, Todd P.
  • Journal of Botany, Vol. 2011
  • DOI: 10.1155/2011/570319

The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution
journal, August 2015

  • Cao, Hieu Xuan; Vu, Giang Thi Ha; Wang, Wenqin
  • New Phytologist, Vol. 209, Issue 1
  • DOI: 10.1111/nph.13592

Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species
journal, March 2006

  • Lysak, M. A.; Berr, A.; Pecinka, A.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 13
  • DOI: 10.1073/pnas.0510791103

The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle
journal, February 2014

  • Wang, W.; Haberer, G.; Gundlach, H.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4311

The Apostasia genome and the evolution of orchids
journal, September 2017

  • Zhang, Guo-Qiang; Liu, Ke-Wei; Li, Zhen
  • Nature, Vol. 549, Issue 7672
  • DOI: 10.1038/nature23897

Nutritional value of duckweeds (Lemnaceae) as human food
journal, February 2017


Photophysiology of turion formation and germination inSpirodela polyrhiza
journal, March 1996

  • Appenroth, K. -J.; Teller, S.; Horn, M.
  • Biologia Plantarum, Vol. 38, Issue 1
  • DOI: 10.1007/BF02879642

Reprobing Multicolor Fish Preparations in Lepidopteran Chromosome
journal, March 2009

  • Shibata, Fukashi; Sahara, Ken; Naito, Yota
  • Zoological Science, Vol. 26, Issue 3
  • DOI: 10.2108/zsj.26.187

Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA
journal, August 2008

  • Cabrera, L. I.; Salazar, G. A.; Chase, M. W.
  • American Journal of Botany, Vol. 95, Issue 9
  • DOI: 10.3732/ajb.0800073

Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants
journal, September 2016


Growing duckweed for biofuel production: a review
journal, July 2014


Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies
journal, February 2017

  • Michael, Todd P.; Bryant, Douglas; Gutierrez, Ryan
  • The Plant Journal, Vol. 89, Issue 3
  • DOI: 10.1111/tpj.13400

Relative in vitro growth rates of duckweeds (Lemnaceae) - the most rapidly growing higher plants
journal, May 2014

  • Ziegler, P.; Adelmann, K.; Zimmer, S.
  • Plant Biology, Vol. 17
  • DOI: 10.1111/plb.12184

Chromosomal localization of rDNA in the Brassicaceae
journal, April 2005

  • Ali, Hoda B. M.; Lysak, Martin A.; Schubert, Ingo
  • Genome, Vol. 48, Issue 2
  • DOI: 10.1139/g04-116

Polyphyletic Origin of Parallel Basal Bodies in Swimming Cells of Chlorophycean Green Algae (Chlorophyta)1
journal, July 2003


Chromosomal Phylogeny and Karyotype Evolution in x=7 Crucifer Species (Brassicaceae)
journal, October 2008


LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons
journal, January 2008

  • Ellinghaus, David; Kurtz, Stefan; Willhoeft, Ute
  • BMC Bioinformatics, Vol. 9, Issue 1
  • DOI: 10.1186/1471-2105-9-18

Relationships within the Araceae: Comparison of morphological patterns with molecular phylogenies
journal, April 2011

  • Cusimano, Natalie; Bogner, Josef; Mayo, Simon J.
  • American Journal of Botany, Vol. 98, Issue 4
  • DOI: 10.3732/ajb.1000158

Fast and accurate de novo genome assembly from long uncorrected reads
journal, January 2017

  • Vaser, Robert; Sović, Ivan; Nagarajan, Niranjan
  • Genome Research, Vol. 27, Issue 5
  • DOI: 10.1101/gr.214270.116

Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement
journal, November 2014


Whole-Genome Sequencing in Outbreak Analysis
journal, April 2015

  • Gilchrist, Carol A.; Turner, Stephen D.; Riley, Margaret F.
  • Clinical Microbiology Reviews, Vol. 28, Issue 3
  • DOI: 10.1128/CMR.00075-13

Reprobing of DNA: DNA in situ hybridization preparations
journal, November 1992


Duckweed in bloom: the 2nd International Conference on Duckweed Research and Applications heralds the return of a plant model for plant biology
journal, January 2014


Natural variance in salt tolerance and induction of starch accumulation in duckweeds
journal, February 2015


Works referencing / citing this record:

Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies
journal, November 2019


Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds
journal, March 2019


Nanopore sequencing: Review of potential applications in functional genomics
journal, April 2019

  • Kono, Nobuaki; Arakawa, Kazuharu
  • Development, Growth & Differentiation, Vol. 61, Issue 5
  • DOI: 10.1111/dgd.12608

Efficient genetic transformation and CRISPR /Cas9‐mediated genome editing in Lemna aequinoctialis
journal, May 2019

  • Liu, Yu; Wang, Yu; Xu, Shuqing
  • Plant Biotechnology Journal, Vol. 17, Issue 11
  • DOI: 10.1111/pbi.13128

Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies
journal, November 2019


Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds
journal, March 2019


Efficient genetic transformation and CRISPR /Cas9‐mediated genome editing in Lemna aequinoctialis
journal, May 2019

  • Liu, Yu; Wang, Yu; Xu, Shuqing
  • Plant Biotechnology Journal, Vol. 17, Issue 11
  • DOI: 10.1111/pbi.13128