DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Micron-size Silicon Monoxide Asymmetric Membranes for Highly Stable Lithium Ion Battery Anode

Abstract

To meet the increasing demand for high energy density lithium ion batteries for electric vehicles and mobile electronics, it is mandatory to make revolutionary changes in electrode materials and chemistry. In this report, micron-size silicon monoxide powders are utilized to fabricate asymmetric membranes via a phase inversion method. We investigate the effects of carbonization temperature, silicon monoxide concentration and glues on membrane microstructure and electrochemical performance. It is also observed that silicon monoxide powders in the membranes consist of silicon with multiple oxidation states. All silicon monoxide asymmetric membrane electrodes are characteristic of significantly improved cycling stability as compared to the control silicon monoxide electrode. The best cycling performance is achieved from the asymmetric membrane with lower silicon monoxide content and using carboxymethyl cellulose as the glue. 95% initial capacity can be retained after 110 cycles at 400 mA g-1 for the membrane with ~33 wt.% silicon monoxide. Its initial capacity loss is only 23.1% with an average coulombic efficiency of 99.82% over 110 cycles.

Authors:
 [1];  [2];  [1];  [1]; ORCiD logo [3]
  1. Georgia Southern Univ., Statesboro, GA (United States). Dept. of Chemistry and Biochemistry
  2. Binghamton Univ., NY (United States). Dept. of Mechanical Engineering
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy & Transportation Science Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1474567
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry Select
Additional Journal Information:
Journal Volume: 3; Journal Issue: 30; Journal ID: ISSN 2365-6549
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; asymmetric membrane; binders; lithium ion battery anode; micron-size silicon monoxide; phase inversion

Citation Formats

Wu, Ji, Jin, Congrui, Johnson, Nathan, Kusi, Moses, and Li, Jianlin. Micron-size Silicon Monoxide Asymmetric Membranes for Highly Stable Lithium Ion Battery Anode. United States: N. p., 2018. Web. doi:10.1002/slct.201801649.
Wu, Ji, Jin, Congrui, Johnson, Nathan, Kusi, Moses, & Li, Jianlin. Micron-size Silicon Monoxide Asymmetric Membranes for Highly Stable Lithium Ion Battery Anode. United States. https://doi.org/10.1002/slct.201801649
Wu, Ji, Jin, Congrui, Johnson, Nathan, Kusi, Moses, and Li, Jianlin. Thu . "Micron-size Silicon Monoxide Asymmetric Membranes for Highly Stable Lithium Ion Battery Anode". United States. https://doi.org/10.1002/slct.201801649. https://www.osti.gov/servlets/purl/1474567.
@article{osti_1474567,
title = {Micron-size Silicon Monoxide Asymmetric Membranes for Highly Stable Lithium Ion Battery Anode},
author = {Wu, Ji and Jin, Congrui and Johnson, Nathan and Kusi, Moses and Li, Jianlin},
abstractNote = {To meet the increasing demand for high energy density lithium ion batteries for electric vehicles and mobile electronics, it is mandatory to make revolutionary changes in electrode materials and chemistry. In this report, micron-size silicon monoxide powders are utilized to fabricate asymmetric membranes via a phase inversion method. We investigate the effects of carbonization temperature, silicon monoxide concentration and glues on membrane microstructure and electrochemical performance. It is also observed that silicon monoxide powders in the membranes consist of silicon with multiple oxidation states. All silicon monoxide asymmetric membrane electrodes are characteristic of significantly improved cycling stability as compared to the control silicon monoxide electrode. The best cycling performance is achieved from the asymmetric membrane with lower silicon monoxide content and using carboxymethyl cellulose as the glue. 95% initial capacity can be retained after 110 cycles at 400 mA g-1 for the membrane with ~33 wt.% silicon monoxide. Its initial capacity loss is only 23.1% with an average coulombic efficiency of 99.82% over 110 cycles.},
doi = {10.1002/slct.201801649},
journal = {Chemistry Select},
number = 30,
volume = 3,
place = {United States},
year = {2018},
month = {8}
}

Works referenced in this record:

Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
journal, June 2017


Silicon as anode for high-energy lithium ion batteries: From molten ingot to nanoparticles
journal, December 2015


Nanocrystalline silicon carbide thin film electrodes for lithium-ion batteries
journal, October 2014


Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries
journal, February 2011


Sodium Carboxymethyl Cellulose
journal, January 2007

  • Li, Jing; Lewis, R. B.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 2
  • DOI: 10.1149/1.2398725

Improving Anodes for Lithium Ion Batteries
journal, October 2010

  • Simon, Gerard K.; Goswami, Tarun
  • Metallurgical and Materials Transactions A, Vol. 42, Issue 1
  • DOI: 10.1007/s11661-010-0438-5

Reverse osmosis desalination: Water sources, technology, and today's challenges
journal, May 2009


Erratum: High-performance lithium-ion anodes using a hierarchical bottom-up approach
journal, March 2010

  • Magasinski, A.; Dixon, P.; Hertzberg, B.
  • Nature Materials, Vol. 9, Issue 5
  • DOI: 10.1038/nmat2749

Improvement of thermal stability and safety of lithium ion battery using SiO anode material
journal, February 2016


High-Areal-Capacity Silicon Electrodes with Low-Cost Silicon Particles Based on Spatial Control of Self-Healing Binder
journal, January 2015

  • Chen, Zheng; Wang, Chao; Lopez, Jeffrey
  • Advanced Energy Materials, Vol. 5, Issue 8
  • DOI: 10.1002/aenm.201401826

Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells
journal, December 2015


Thermally Controlled V2O5 Nanoparticles as Cathode Materials for Lithium-Ion Batteries with Enhanced Rate Capability
journal, May 2015


In-situ observation of volume expansion behavior of a silicon particle in various electrolytes
journal, January 2016


A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries
journal, January 1999

  • Li, Hong; Huang, Xuejie; Chen, Liquan
  • Electrochemical and Solid-State Letters, Vol. 2, Issue 11, p. 547-549
  • DOI: 10.1149/1.1390899

UV-Vis and XRD investigation of graphite-doped poly(acrylic) acid membranes
journal, January 2014

  • Todica, Mihai; Stefan, Traian; Simon, Simion
  • TURKISH JOURNAL OF PHYSICS, Vol. 38
  • DOI: 10.3906/fiz-1305-16

Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries
journal, July 2014


Kinetics of Reaction Products of Silicon Monoxide with Controlled Amount of Li-Ion Insertion at Various Current Densities for Li-Ion Batteries
journal, January 2014

  • Lee, Jun Kyu; Yoon, Woo Young; Kim, Bok Ki
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.040406jes

Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries
journal, January 2018

  • Cao, Peng-Fei; Naguib, Michael; Du, Zhijia
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 4
  • DOI: 10.1021/acsami.7b13205

Review on recent progress of nanostructured anode materials for Li-ion batteries
journal, July 2014


Linking particle size to improved electrochemical performance of SiO anodes for Li-ion batteries
journal, January 2017

  • Huang, Tao; Yang, Yaxiong; Pu, Kaichao
  • RSC Advances, Vol. 7, Issue 4
  • DOI: 10.1039/C6RA25714C

X-ray photoelectron spectroscopic characterization of ultra-thin silicon oxide films on a Mo(100) surface
journal, December 1992


Li-ion battery materials: present and future
journal, June 2015


Improved electrochemical performance of boron-doped SiO negative electrode materials in lithium-ion batteries
journal, December 2015


Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries
journal, January 2015

  • Byrd, Ian; Chen, Hao; Webber, Theron
  • RSC Advances, Vol. 5, Issue 113
  • DOI: 10.1039/C5RA19208K

What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?
journal, April 2018


Turning Carbon Black to Hollow Carbon Nanospheres for Enhancing Charge Storage Capacities of LiMn 2 O 4 , LiCoO 2 , LiNiMnCoO 2 , and LiFePO 4 Lithium-Ion Batteries
journal, July 2017

  • Wutthiprom, Juthaporn; Phattharasupakun, Nutthaphon; Sawangphruk, Montree
  • ACS Omega, Vol. 2, Issue 7
  • DOI: 10.1021/acsomega.7b00763

Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes
journal, June 2009

  • Ruffo, Riccardo; Hong, Seung Sae; Chan, Candace K.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 26, p. 11390-11398
  • DOI: 10.1021/jp901594g

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Foamed mesoporous carbon/silicon composite nanofiber anode for lithium ion batteries
journal, May 2015


In Situ Formed Si Nanoparticle Network with Micron-Sized Si Particles for Lithium-Ion Battery Anodes
journal, October 2013

  • Wu, Mingyan; Sabisch, Julian E. C.; Song, Xiangyun
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402953h

Pyrolysis of polyacrylonitrile and related polymers—I. Thermal analysis of polyacrylonitrile
journal, September 1970


Electrolyte Volume Effects on Electrochemical Performance and Solid Electrolyte Interphase in Si-Graphite/NMC Lithium-Ion Pouch Cells
journal, May 2017

  • An, Seong Jin; Li, Jianlin; Daniel, Claus
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 22
  • DOI: 10.1021/acsami.7b03617

Raman spectra of silicon monoxide
journal, January 1986


Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries
journal, October 2012


Fabrication of SnO 2 Asymmetric Membranes for High Performance Lithium Battery Anode
journal, May 2016

  • Wu, Ji; Chen, Hao; Byrd, Ian
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 22
  • DOI: 10.1021/acsami.6b03310

Artificial Solid Electrolyte Interphase-Protected Li x Si Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries
journal, June 2015

  • Zhao, Jie; Lu, Zhenda; Wang, Haotian
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b04526

A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries
journal, January 2015

  • Lin, Dingchang; Lu, Zhenda; Hsu, Po-Chun
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE01363A

Recent advancement of SiOx based anodes for lithium-ion batteries
journal, September 2017


Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
journal, November 2013

  • Wang, Chao; Wu, Hui; Chen, Zheng
  • Nature Chemistry, Vol. 5, Issue 12
  • DOI: 10.1038/nchem.1802

Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries
journal, October 2009


A new SiO/C anode composition for lithium-ion battery
journal, April 2008


Enhancement of Electrochemical Stability about Silicon/Carbon Composite Anode Materials for Lithium Ion Batteries
journal, January 2015

  • Xiao, Wei; Miao, Chang; Yan, Xuemin
  • Journal of Nanomaterials, Vol. 2015
  • DOI: 10.1155/2015/926256

Works referencing / citing this record:

Enhanced Processing and Testing Concepts for New Active Materials for Lithium‐Ion Batteries
journal, April 2019

  • Bockwinkel, Kai; Nowak, Christine; Thiede, Bastian
  • Energy Technology, Vol. 8, Issue 2
  • DOI: 10.1002/ente.201900133