skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar

Abstract

Static compression experiments over 4 Mbar are rare, yet critical for developing accurate fundamental physics and chemistry models, relevant to a range of topics including modeling planetary interiors. Here we show that focused ion beam crafted toroidal single-crystal diamond anvils with ~9.0 μm culets are capable of producing pressures over 5 Mbar. The toroidal surface prevents gasket outflow and provides a means to stabilize the central culet. We have reached a maximum pressure of ~6.15 Mbar using Re as in situ pressure marker, a pressure regime typically accessed only by double-stage diamond anvils and dynamic compression platforms. In conclusion, optimizing single-crystal diamond anvil design is key for extending the pressure range over which studies can be performed in the diamond anvil cell.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1474369
Report Number(s):
[LLNL-JRNL-746958]
[Journal ID: ISSN 2041-1723; 931484]
Grant/Contract Number:  
[AC52-07NA27344]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
[ Journal Volume: 9; Journal Issue: 1]; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Jenei, Zs., O’Bannon, E. F., Weir, S. T., Cynn, H., Lipp, M. J., and Evans, W. J. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. United States: N. p., 2018. Web. doi:10.1038/s41467-018-06071-x.
Jenei, Zs., O’Bannon, E. F., Weir, S. T., Cynn, H., Lipp, M. J., & Evans, W. J. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. United States. doi:10.1038/s41467-018-06071-x.
Jenei, Zs., O’Bannon, E. F., Weir, S. T., Cynn, H., Lipp, M. J., and Evans, W. J. Mon . "Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar". United States. doi:10.1038/s41467-018-06071-x. https://www.osti.gov/servlets/purl/1474369.
@article{osti_1474369,
title = {Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar},
author = {Jenei, Zs. and O’Bannon, E. F. and Weir, S. T. and Cynn, H. and Lipp, M. J. and Evans, W. J.},
abstractNote = {Static compression experiments over 4 Mbar are rare, yet critical for developing accurate fundamental physics and chemistry models, relevant to a range of topics including modeling planetary interiors. Here we show that focused ion beam crafted toroidal single-crystal diamond anvils with ~9.0 μm culets are capable of producing pressures over 5 Mbar. The toroidal surface prevents gasket outflow and provides a means to stabilize the central culet. We have reached a maximum pressure of ~6.15 Mbar using Re as in situ pressure marker, a pressure regime typically accessed only by double-stage diamond anvils and dynamic compression platforms. In conclusion, optimizing single-crystal diamond anvil design is key for extending the pressure range over which studies can be performed in the diamond anvil cell.},
doi = {10.1038/s41467-018-06071-x},
journal = {Nature Communications},
number = [1],
volume = [9],
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Static compression of iron to 300 GPa and Fe 0.8 Ni 0.2 alloy to 260 GPa: Implications for composition of the core
journal, January 1990


Megabar high-pressure cells for Raman measurements
journal, January 2003

  • Eremets, M. I.
  • Journal of Raman Spectroscopy, Vol. 34, Issue 7-8
  • DOI: 10.1002/jrs.1044

The closing diamond anvil optical window in multimegabar research
journal, May 1991

  • Ruoff, Arthur L.; Luo, Huan; Vohra, Yogesh K.
  • Journal of Applied Physics, Vol. 69, Issue 9
  • DOI: 10.1063/1.348845

Ramp compression of diamond to five terapascals
journal, July 2014

  • Smith, R. F.; Eggert, J. H.; Jeanloz, R.
  • Nature, Vol. 511, Issue 7509
  • DOI: 10.1038/nature13526

Solid hydrogen at 342 GPa: no evidence for an alkali metal
journal, May 1998

  • Narayana, Chandrabhas; Luo, Huan; Orloff, Jon
  • Nature, Vol. 393, Issue 6680
  • DOI: 10.1038/29949

Rapid Growth of Nanocrystalline Diamond on Single Crystal Diamond for Studies on Materials under Extreme Conditions
journal, January 2018


DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration
journal, May 2015


High pressure generation using double-stage diamond anvil technique: problems and equations of state of rhenium
journal, March 2018


High-temperature experiments using a resistively heated high-pressure membrane diamond anvil cell
journal, September 2013

  • Jenei, Zsolt; Cynn, Hyunchae; Visbeck, Ken
  • Review of Scientific Instruments, Vol. 84, Issue 9
  • DOI: 10.1063/1.4821622

Miniaturization techniques for obtaining static pressures comparable to the pressure at the center of the earth: X‐ray diffraction at 416 GPa
journal, December 1990

  • Ruoff, Arthur L.; Xia, Hui; Luo, Huan
  • Review of Scientific Instruments, Vol. 61, Issue 12
  • DOI: 10.1063/1.1141509

The most incompressible metal osmium at static pressures above 750 gigapascals
journal, August 2015

  • Dubrovinsky, L.; Dubrovinskaia, N.; Bykova, E.
  • Nature, Vol. 525, Issue 7568
  • DOI: 10.1038/nature14681

Theoretical Strength and Cleavage of Diamond
journal, May 2000


Toroid type high-pressure device: history and prospects
journal, September 2004


Terapascal static pressure generation with ultrahigh yield strength nanodiamond
journal, July 2016

  • Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A.
  • Science Advances, Vol. 2, Issue 7
  • DOI: 10.1126/sciadv.1600341

Optical transitions in diamond at ultrahigh pressures
journal, June 1991


Diamond cleavage: importance to high pressure research
journal, December 2016


Stability of Ar(H 2 ) 2 to 358 GPa
journal, March 2017

  • Ji, Cheng; Goncharov, Alexander F.; Shukla, Vivekanand
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 14
  • DOI: 10.1073/pnas.1700049114

Equation of state of bcc-Mo by static volume compression to 410 GPa
journal, December 2014

  • Akahama, Yuichi; Hirao, Naohisa; Ohishi, Yasuo
  • Journal of Applied Physics, Vol. 116, Issue 22
  • DOI: 10.1063/1.4903940

Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar
journal, January 2012

  • Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Prakapenka, Vitali B.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2160

Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen
journal, April 2002

  • Loubeyre, Paul; Occelli, Florent; LeToullec, René
  • Nature, Vol. 416, Issue 6881
  • DOI: 10.1038/416613a

Young's modulus and Poisson's ratio of CVD diamond
journal, April 1993


Note: High-pressure generation using nano-polycrystalline diamonds as anvil materials
journal, June 2011

  • Nakamoto, Y.; Sakata, M.; Sumiya, H.
  • Review of Scientific Instruments, Vol. 82, Issue 6
  • DOI: 10.1063/1.3600794

The strength of diamond
journal, October 2005

  • Eremets, Mikhail I.; Trojan, Ivan A.; Gwaze, Patience
  • Applied Physics Letters, Vol. 87, Issue 14
  • DOI: 10.1063/1.2061853

Compressive Strength of Diamond from First-Principles Calculation
journal, September 2010

  • Luo, Xiaoguang; Liu, Zhongyuan; Xu, Bo
  • The Journal of Physical Chemistry C, Vol. 114, Issue 41
  • DOI: 10.1021/jp102037j