skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reconfigurable room temperature metamaterial infrared emitter

Abstract

The marriage of micro/nanoelectromechanical systems with metamaterials offers a viable route to achieving reconfigurable devices, which control the emission of energy. Here we propose and demonstrate the idea of a metamaterial microelectromechanical system (MEMS) capable of tailoring the energy emitted from a surface, without changing the temperature, but, instead, only altering the spectral emissivity. Our metamaterial achieves a range of emissivities equivalent to a nearly 20°C temperature change when viewed with a thermal infrared camera. We tessellate a surface with individually reconfigurable MEMS metamaterial pixels, thus realizing a spatiotemporal emitter capable of displaying thermal infrared patterns up to 110 kHz. Furthermore, our results may be scaled to nearly any sub-optical range of the electromagnetic spectrum, and validate the potential of MEMS metamaterials to operate as reconfigurable multifunctional devices with unprecedented energy control capabilities.

Authors:
 [1];  [1]
  1. Duke Univ., Durham, NC (United States). Dept .of Electrical and Computer Engineering
Publication Date:
Research Org.:
Duke Univ., Durham, NC (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1474139
Grant/Contract Number:  
SC0014372
Resource Type:
Accepted Manuscript
Journal Name:
Optica
Additional Journal Information:
Journal Volume: 4; Journal Issue: 4; Journal ID: ISSN 2334-2536
Publisher:
Optical Society of America
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; metamaterials; optical microelectromechanical devices; infrared imaging; temperature; thermal emission

Citation Formats

Liu, Xinyu, and Padilla, Willie J. Reconfigurable room temperature metamaterial infrared emitter. United States: N. p., 2017. Web. doi:10.1364/OPTICA.4.000430.
Liu, Xinyu, & Padilla, Willie J. Reconfigurable room temperature metamaterial infrared emitter. United States. doi:10.1364/OPTICA.4.000430.
Liu, Xinyu, and Padilla, Willie J. Thu . "Reconfigurable room temperature metamaterial infrared emitter". United States. doi:10.1364/OPTICA.4.000430. https://www.osti.gov/servlets/purl/1474139.
@article{osti_1474139,
title = {Reconfigurable room temperature metamaterial infrared emitter},
author = {Liu, Xinyu and Padilla, Willie J.},
abstractNote = {The marriage of micro/nanoelectromechanical systems with metamaterials offers a viable route to achieving reconfigurable devices, which control the emission of energy. Here we propose and demonstrate the idea of a metamaterial microelectromechanical system (MEMS) capable of tailoring the energy emitted from a surface, without changing the temperature, but, instead, only altering the spectral emissivity. Our metamaterial achieves a range of emissivities equivalent to a nearly 20°C temperature change when viewed with a thermal infrared camera. We tessellate a surface with individually reconfigurable MEMS metamaterial pixels, thus realizing a spatiotemporal emitter capable of displaying thermal infrared patterns up to 110 kHz. Furthermore, our results may be scaled to nearly any sub-optical range of the electromagnetic spectrum, and validate the potential of MEMS metamaterials to operate as reconfigurable multifunctional devices with unprecedented energy control capabilities.},
doi = {10.1364/OPTICA.4.000430},
journal = {Optica},
number = 4,
volume = 4,
place = {United States},
year = {2017},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: (a) Schematic of the MME in both emissive off (left) and on (right) states. (b) SEM images of the MME at a tilt angle of 45°. (c) Close-up image of the metamaterial. Dimensions are $p$ = 4.6 μm, $l$ = 1.3 μm, and $w$ = 0.6 μm.

Save / Share:

Works referenced in this record:

Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters
journal, July 2011


Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride
journal, January 2012

  • Kischkat, Jan; Peters, Sven; Gruska, Bernd
  • Applied Optics, Vol. 51, Issue 28
  • DOI: 10.1364/AO.51.006789

Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays
journal, January 2012

  • Cheng, Cheng-Wen; Abbas, Mohammed Nadhim; Chiu, Chao-Wei
  • Optics Express, Vol. 20, Issue 9
  • DOI: 10.1364/OE.20.010376

Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems
journal, February 2010

  • Hildenbrand, JÜrgen; Korvink, Jan; Wollenstein, JÜrgen
  • IEEE Sensors Journal, Vol. 10, Issue 2
  • DOI: 10.1109/JSEN.2009.2034624

A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability
journal, July 2015

  • Tittl, Andreas; Michel, Ann-Katrin U.; Schäferling, Martin
  • Advanced Materials, Vol. 27, Issue 31
  • DOI: 10.1002/adma.201502023

Thermochromic Infrared Metamaterials
journal, November 2015


Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials
journal, June 2013


I.— An Account of some Experiments on Radiant Heat, involving an extension of Prevost's Theory of Exchanges
journal, January 1861


Thermal radiation of lamellar metal-dielectric metamaterials and metallic surfaces
journal, January 2015

  • Noginov, M. A.; Mozafari, A.; Tumkur, T. U.
  • Optical Materials Express, Vol. 5, Issue 7, p. 1511-1525
  • DOI: 10.1364/OME.5.001511

High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics
journal, December 2012

  • Molesky, Sean; Dewalt, Christopher J.; Jacob, Zubin
  • Optics Express, Vol. 21, Issue S1
  • DOI: 10.1364/OE.21.000A96

Study of the Pull-In Voltage for MEMS Parallel Plate Capacitor Actuators
journal, January 2003

  • Saucedo-Flores, Emmanuel; Ruelas, Rubén; Flores, Martín
  • MRS Proceedings, Vol. 782
  • DOI: 10.1557/PROC-782-A5.86

Narrow-band, tunable infrared emission from arrays of microstrip patches
journal, June 2008

  • Puscasu, Irina; Schaich, William L.
  • Applied Physics Letters, Vol. 92, Issue 23
  • DOI: 10.1063/1.2938716

512×512 Infrared cryogenic scene projector arrays
journal, May 1995


Electrochromic emissivity modulator for spacecraft thermal management
journal, December 2009


An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared
journal, March 2013

  • Ou, Jun-Yu; Plum, Eric; Zhang, Jianfa
  • Nature Nanotechnology, Vol. 8, Issue 4, p. 252-255
  • DOI: 10.1038/nnano.2013.25

Realization of dynamic thermal emission control
journal, July 2014

  • Inoue, Takuya; Zoysa, Menaka De; Asano, Takashi
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4043

Dynamic infrared scene projection: a review
journal, December 1998


Electronic modulation of infrared radiation in graphene plasmonic resonators
journal, May 2015

  • Brar, Victor W.; Sherrott, Michelle C.; Jang, Min Seok
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8032

Broadband terahertz generation from metamaterials
journal, January 2014

  • Luo, Liang; Chatzakis, Ioannis; Wang, Jigang
  • Nature Communications, Vol. 5, Article No. 3055
  • DOI: 10.1038/ncomms4055

    Works referencing / citing this record:

    Reconfigurable room temperature metamaterial infrared emitter [Supplemental Data]
    collection, April 2017

    • Padilla, Willie J.; Liu, Xinyu
    • figshare-Supplementary information for journal article at DOI: 10.1364/OPTICA.4.000430, 2 files
    • DOI: 10.6084/m9.figshare.c.3767405

    Dynamic gating of infrared radiation in a textile
    journal, February 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.