skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Magnetometer Based on a Spin Wave Interferometer

Abstract

Here, we describe a magnetic field sensor based on a spin wave interferometer. Its sensing element consists of a magnetic cross junction with four micro-antennas fabricated at the edges. Two of these antennas are used for spin wave excitation while two other antennas are used for detection of the inductive voltage produced by the interfering spin waves. Two waves propagating in the orthogonal arms of the cross may accumulate significantly different phase shifts depending on the magnitude and direction of the external magnetic field. This phenomenon is utilized for magnetic field sensing. The sensitivity attains its maximum under the destructive interference condition, where a small change in the external magnetic field results in a drastic increase of the inductive voltage, as well as in the change of the output phase. We report experimental data obtained for a micrometer scale Y 3Fe 2(FeO 4) 3 cross structure. The change of the inductive voltage near the destructive interference point exceeds 40 dB per 1 Oe. The phase of the output signal exhibits a π-phase shift within 1 Oe. The data are collected at room temperature. Taking into account the low thermal noise in ferrite structures, we estimate that the maximum sensitivity ofmore » the spin wave magnetometer may exceed attotesla.« less

Authors:
 [1];  [1];  [1];  [2];  [2];  [3];  [1];  [1]
  1. Univ. of California, Riverside, CA (United States). Dept. of Electrical and Computer Engineering
  2. Russian Academy of Sciences (RAS), Moscow (Russian Federation). Koteinikov Inst. of Radioengineering and Electronics
  3. Russian Academy of Sciences (RAS), Moscow (Russian Federation). Koteinikov Inst. of Radioengineering and Electronics; Saratov State Univ. (Russian Federation)
Publication Date:
Research Org.:
Univ. of California, Riverside, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1474132
Grant/Contract Number:  
SC0012670
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Balynsky, M., Gutierrez, D., Chiang, H., Kozhevnikov, A., Dudko, G., Filimonov, Y., Balandin, A. A., and Khitun, A. A Magnetometer Based on a Spin Wave Interferometer. United States: N. p., 2017. Web. doi:10.1038/s41598-017-11881-y.
Balynsky, M., Gutierrez, D., Chiang, H., Kozhevnikov, A., Dudko, G., Filimonov, Y., Balandin, A. A., & Khitun, A. A Magnetometer Based on a Spin Wave Interferometer. United States. doi:10.1038/s41598-017-11881-y.
Balynsky, M., Gutierrez, D., Chiang, H., Kozhevnikov, A., Dudko, G., Filimonov, Y., Balandin, A. A., and Khitun, A. Thu . "A Magnetometer Based on a Spin Wave Interferometer". United States. doi:10.1038/s41598-017-11881-y. https://www.osti.gov/servlets/purl/1474132.
@article{osti_1474132,
title = {A Magnetometer Based on a Spin Wave Interferometer},
author = {Balynsky, M. and Gutierrez, D. and Chiang, H. and Kozhevnikov, A. and Dudko, G. and Filimonov, Y. and Balandin, A. A. and Khitun, A.},
abstractNote = {Here, we describe a magnetic field sensor based on a spin wave interferometer. Its sensing element consists of a magnetic cross junction with four micro-antennas fabricated at the edges. Two of these antennas are used for spin wave excitation while two other antennas are used for detection of the inductive voltage produced by the interfering spin waves. Two waves propagating in the orthogonal arms of the cross may accumulate significantly different phase shifts depending on the magnitude and direction of the external magnetic field. This phenomenon is utilized for magnetic field sensing. The sensitivity attains its maximum under the destructive interference condition, where a small change in the external magnetic field results in a drastic increase of the inductive voltage, as well as in the change of the output phase. We report experimental data obtained for a micrometer scale Y3Fe2(FeO4)3 cross structure. The change of the inductive voltage near the destructive interference point exceeds 40 dB per 1 Oe. The phase of the output signal exhibits a π-phase shift within 1 Oe. The data are collected at room temperature. Taking into account the low thermal noise in ferrite structures, we estimate that the maximum sensitivity of the spin wave magnetometer may exceed attotesla.},
doi = {10.1038/s41598-017-11881-y},
journal = {Scientific Reports},
number = 1,
volume = 7,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Measuring low alternating magnetic fields by means of Bi‐containing rare‐earth ferrite‐garnet films with planar anisotropy
journal, November 1991

  • Vetoshko, Peter M.; Volkovoy, Vadim B.; Zalogin, Vladimir N.
  • Journal of Applied Physics, Vol. 70, Issue 10
  • DOI: 10.1063/1.349973

Measurement of mutual inductance from the frequency dependence of impedance of AC coupled circuits using a digital dual-phase lock-in amplifier
journal, February 2008

  • Schauber, Michael J.; Newman, Seth A.; Goodman, Lindsey R.
  • American Journal of Physics, Vol. 76, Issue 2
  • DOI: 10.1119/1.2820391

Magnonic interferometric switch for multi-valued logic circuits
journal, January 2017

  • Balynsky, Michael; Kozhevnikov, Alexander; Khivintsev, Yuri
  • Journal of Applied Physics, Vol. 121, Issue 2
  • DOI: 10.1063/1.4973115

Highly Sensitive and Easy-to-Use SQUID Sensors
journal, June 2007

  • Drung, D. .; Assmann, C. .; Beyer, J. .
  • IEEE Transactions on Applied Superconductivity, Vol. 17, Issue 2
  • DOI: 10.1109/tasc.2007.897403

Erratum: Time-Resolved Measurement of Propagating Spin Waves in Ferromagnetic Thin Films [Phys. Rev. Lett. 89 , 237202 (2002)]
journal, February 2004


Inductive measurement of ultrafast magnetization dynamics in thin-film Permalloy
journal, June 1999

  • Silva, T. J.; Lee, C. S.; Crawford, T. M.
  • Journal of Applied Physics, Vol. 85, Issue 11
  • DOI: 10.1063/1.370596

Applications of interferometric signal processing to phase-noise reduction in microwave oscillators
journal, January 1998

  • Ivanov, E. N.; Tobar, M. E.; Woode, R. A.
  • IEEE Transactions on Microwave Theory and Techniques, Vol. 46, Issue 10
  • DOI: 10.1109/22.721162

Pattern recognition with magnonic holographic memory device
journal, April 2015

  • Kozhevnikov, A.; Gertz, F.; Dudko, G.
  • Applied Physics Letters, Vol. 106, Issue 14
  • DOI: 10.1063/1.4917507

Magnetostatic modes of a ferromagnet slab
journal, May 1961


Ultrasensitive 3He magnetometer for measurements of high magnetic fields
journal, November 2014


Spinwave dispersion curves for yttrium iron garnet
journal, December 1977


A compact, high performance atomic magnetometer for biomedical applications
journal, November 2013


An absorption-type proton NMR magnetometer for measuring low magnetic fields
journal, February 2007


Magnonic Holographic Memory: From Proposal to Device
journal, January 2015

  • Gertz, Frederick; Kozhevnikov, Alexander V.; Filimonov, Yury A.
  • IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, Vol. 1
  • DOI: 10.1109/JXCDC.2015.2461618

Tunneling of Dipolar Spin Waves through a Region of Inhomogeneous Magnetic Field
journal, July 2004


Magnonic beam splitter: The building block of parallel magnonic circuitry
journal, May 2015

  • Sadovnikov, A. V.; Davies, C. S.; Grishin, S. V.
  • Applied Physics Letters, Vol. 106, Issue 19
  • DOI: 10.1063/1.4921206

Erratum: Towards graded-index magnonics: Steering spin waves in magnonic networks [Phys. Rev. B 92, 020408(R) (2015)]
journal, January 2017


A compact fiber-optic magnetometer employing an amorphous metal wire transducer
journal, December 1989

  • Koo, K. P.; Bucholtz, F.; Dagenais, D. M.
  • IEEE Photonics Technology Letters, Vol. 1, Issue 12
  • DOI: 10.1109/68.46051

Magnon transistor for all-magnon data processing
journal, August 2014

  • Chumak, Andrii V.; Serga, Alexander A.; Hillebrands, Burkard
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5700

Highly sensitive magnetometers—a review
journal, May 2006


Magnonic Holographic Memory
journal, April 2015

  • Gertz, Frederick; Kozhevnikov, Alexander; Filimonov, Yuri
  • IEEE Transactions on Magnetics, Vol. 51, Issue 4
  • DOI: 10.1109/TMAG.2014.2362723

Fiber-optic magnetic sensor utilizing the Lorentzian force
journal, January 1990

  • Okamura, H.
  • Journal of Lightwave Technology, Vol. 8, Issue 10
  • DOI: 10.1109/50.59196

Propagating spin wave spectroscopy in a permalloy film: A quantitative analysis
journal, August 2003

  • Bailleul, Matthieu; Olligs, Dominik; Fermon, Claude
  • Applied Physics Letters, Vol. 83, Issue 5
  • DOI: 10.1063/1.1597745

Spin-wave logical gates
journal, October 2005

  • Kostylev, M. P.; Serga, A. A.; Schneider, T.
  • Applied Physics Letters, Vol. 87, Issue 15
  • DOI: 10.1063/1.2089147

Epitaxial yttrium iron garnet film as an active medium of an even-harmonic magnetic field transducer
journal, September 2003

  • Vetoshko, Peter M.; Valeiko, Michael V.; Nikitin, Petr I.
  • Sensors and Actuators A: Physical, Vol. 106, Issue 1-3
  • DOI: 10.1016/s0924-4247(03)00182-1