DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries

Abstract

Lithium metal is considered to be the most promising anode for the next-generation lithium batteries. However, dendrite growth due to uneven Li plating during battery cycling leads to short circuit and safety hazards, as well as shorted cycling life for the battery, which is the vital obstacle for the practical application of Li metal anode in lithium batteries. We report a CoO nanofiber decorated Ni foam (CONF) skeleton used as a 3D conductive host to suppress the dendrite formation for composite Li anode (CONF-Li) fabricated by thermal infusion method. The uniformly distributed CoO nanofibers on the Ni foam can improve the lithiophilicity of Ni foam, and decrease the local current inhomogeneity of the anode, leading to a mild and uniform Li plating/stripping behavior which effectively suppresses the Li dendrite formation. As a result, the electrochemical performances of CONF-Li anode are significantly improved both in symmetric cells and full cells (lithium-sulfur and lithium-LiNi0.8Co0.15Al0.05O2 cells) proving its advancement over the pure Li anode.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1]
  1. Fudan Univ., Shanghai (China). Dept. of Materials Science
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Division
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); National Natural Science Foundation of China (NSFC); USDOE
OSTI Identifier:
1473663
Alternate Identifier(s):
OSTI ID: 1496489
Report Number(s):
BNL-209067-2018-JAAM
Journal ID: ISSN 2405-8297
Grant/Contract Number:  
SC0012704; 51502039
Resource Type:
Accepted Manuscript
Journal Name:
Energy Storage Materials
Additional Journal Information:
Journal Volume: 14; Journal Issue: C; Journal ID: ISSN 2405-8297
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Lithium metal battery; Dendrite; Nickel foam; CoO nanofiber; Thermal infusion

Citation Formats

Yue, Xin-Yang, Wang, Wei-Wen, Wang, Qin-Chao, Meng, Jing-Ke, Zhang, Zhao-Qiang, Wu, Xiao-Jing, Yang, Xiao-Qing, and Zhou, Yong-Ning. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. United States: N. p., 2018. Web. doi:10.1016/j.ensm.2018.05.017.
Yue, Xin-Yang, Wang, Wei-Wen, Wang, Qin-Chao, Meng, Jing-Ke, Zhang, Zhao-Qiang, Wu, Xiao-Jing, Yang, Xiao-Qing, & Zhou, Yong-Ning. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. United States. https://doi.org/10.1016/j.ensm.2018.05.017
Yue, Xin-Yang, Wang, Wei-Wen, Wang, Qin-Chao, Meng, Jing-Ke, Zhang, Zhao-Qiang, Wu, Xiao-Jing, Yang, Xiao-Qing, and Zhou, Yong-Ning. Thu . "CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries". United States. https://doi.org/10.1016/j.ensm.2018.05.017. https://www.osti.gov/servlets/purl/1473663.
@article{osti_1473663,
title = {CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries},
author = {Yue, Xin-Yang and Wang, Wei-Wen and Wang, Qin-Chao and Meng, Jing-Ke and Zhang, Zhao-Qiang and Wu, Xiao-Jing and Yang, Xiao-Qing and Zhou, Yong-Ning},
abstractNote = {Lithium metal is considered to be the most promising anode for the next-generation lithium batteries. However, dendrite growth due to uneven Li plating during battery cycling leads to short circuit and safety hazards, as well as shorted cycling life for the battery, which is the vital obstacle for the practical application of Li metal anode in lithium batteries. We report a CoO nanofiber decorated Ni foam (CONF) skeleton used as a 3D conductive host to suppress the dendrite formation for composite Li anode (CONF-Li) fabricated by thermal infusion method. The uniformly distributed CoO nanofibers on the Ni foam can improve the lithiophilicity of Ni foam, and decrease the local current inhomogeneity of the anode, leading to a mild and uniform Li plating/stripping behavior which effectively suppresses the Li dendrite formation. As a result, the electrochemical performances of CONF-Li anode are significantly improved both in symmetric cells and full cells (lithium-sulfur and lithium-LiNi0.8Co0.15Al0.05O2 cells) proving its advancement over the pure Li anode.},
doi = {10.1016/j.ensm.2018.05.017},
journal = {Energy Storage Materials},
number = C,
volume = 14,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Fig. 1. (a, b) SEM images of CONF (inset is the local detail SEM images). (c, d) digital camera photographs of CONF and NF during the molten Li-infusion process (see also Move S1 and S2). e) and f) SEM images of the CONF-Li composite anode (insets are themore » zoom-in local details). g) schematic of the fabrication process of the CONF-Li composite anode.« less

Save / Share:

Works referenced in this record:

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Sulfiphilic Nickel Phosphosulfide Enabled Li 2 S Impregnation in 3D Graphene Cages for Li-S Batteries
journal, January 2017


Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage
journal, September 2017


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

High performance lithium metal anode: Progress and prospects
journal, April 2017


Promises and challenges of nanomaterials for lithium-based rechargeable batteries
journal, June 2016


Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
journal, January 2017

  • Chen, Kuan-Hung; Wood, Kevin N.; Kazyak, Eric
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00371D

A review of lithium deposition in lithium-ion and lithium metal secondary batteries
journal, May 2014


Review—Li Metal Anode in Working Lithium-Sulfur Batteries
journal, June 2017

  • Cheng, Xin-Bing; Huang, Jia-Qi; Zhang, Qiang
  • Journal of The Electrochemical Society, Vol. 165, Issue 1
  • DOI: 10.1149/2.0111801jes

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Critical island size for layer-by-layer growth
journal, January 1994


Self-heating–induced healing of lithium dendrites
journal, March 2018


Study of electronic effect of Grignard reagents on their electrochemical behavior
journal, December 2010


Study on electrochemically deposited Mg metal
journal, August 2011


Prospects for Dendrite-Free Cycling of Li Metal Batteries
journal, January 2015

  • Chen, Qing; Geng, Ke; Sieradzki, K.
  • Journal of The Electrochemical Society, Vol. 162, Issue 10
  • DOI: 10.1149/2.0261510jes

Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy
journal, January 2014

  • Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.
  • Chemical Communications, Vol. 50, Issue 17
  • DOI: 10.1039/c3cc49029g

Visualization of Electrode–Electrolyte Interfaces in LiPF 6 /EC/DEC Electrolyte for Lithium Ion Batteries via in Situ TEM
journal, March 2014

  • Zeng, Zhiyuan; Liang, Wen-I; Liao, Hong-Gang
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl403922u

Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries
journal, January 2014

  • Aryanfar, Asghar; Brooks, Daniel J.; Colussi, Agustín J.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 45
  • DOI: 10.1039/C4CP03590A

Study of the Mechanisms of Internal Short Circuit in a Li/Li Cell by Synchrotron X-ray Phase Contrast Tomography
journal, December 2016


Experimental Validation of the Elimination of Dendrite Short-Circuit Failure in Secondary Lithium-Metal Convection Cell Batteries
journal, December 2014

  • Dornbusch, Donald A.; Hilton, Ramsey; Lohman, Samuel D.
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0021503jes

Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance
journal, October 2017


Nanodiamonds suppress the growth of lithium dendrites
journal, August 2017


Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes
journal, January 2017


Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
journal, February 2016

  • Cheng, Xin-Bing; Hou, Ting-Zheng; Zhang, Rui
  • Advanced Materials, Vol. 28, Issue 15
  • DOI: 10.1002/adma.201506124

Dendrite-Free Lithium Deposition for Lithium Metal Anodes with Interconnected Microsphere Protection
journal, July 2017


Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement
journal, November 2016

  • Liu, Wei; Lin, Dingchang; Pei, Allen
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b08730

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Analysis of lithium ion concentration and stress in the solid electrolyte interphase on the graphite anode
journal, January 2015

  • He, Yaolong; Hu, Hongjiu
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 36
  • DOI: 10.1039/C5CP02893K

3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries
journal, March 2017

  • Li, Qi; Zhu, Shoupu; Lu, Yingying
  • Advanced Functional Materials, Vol. 27, Issue 18
  • DOI: 10.1002/adfm.201606422

Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode
journal, May 2017

  • Chi, Shang-Sen; Liu, Yongchang; Song, Wei-Li
  • Advanced Functional Materials, Vol. 27, Issue 24
  • DOI: 10.1002/adfm.201700348

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries
journal, April 2018


Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

A general prelithiation approach for group IV elements and corresponding oxides
journal, January 2018


Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes
journal, July 2017


Advanced Porous Carbon Materials for High-Efficient Lithium Metal Anodes
journal, July 2017


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
journal, January 2015

  • Bieker, Georg; Winter, Martin; Bieker, Peter
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 14
  • DOI: 10.1039/C4CP05865H

A lithium–sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth–sulfur material
journal, January 2014

  • Miao, Lixiao; Wang, Weikun; Yuan, Keguo
  • Chem. Commun., Vol. 50, Issue 87
  • DOI: 10.1039/C4CC03410D

High rate and stable cycling of lithium-sulfur batteries with carbon fiber cloth interlayer
journal, August 2016


Works referencing / citing this record:

Enabling Stable Lithium Metal Anode via 3D Inorganic Skeleton with Superlithiophilic Interphase
journal, October 2018


Anode Interface Engineering and Architecture Design for High‐Performance Lithium–Sulfur Batteries
journal, January 2019


Stable Li Metal Anode Enabled by Space Confinement and Uniform Curvature through Lithiophilic Nanotube Arrays
journal, November 2019

  • Tantratian, Karnpiwat; Cao, Daxian; Abdelaziz, Ahmed
  • Advanced Energy Materials, Vol. 10, Issue 5
  • DOI: 10.1002/aenm.201902819

3D Porous Cu Current Collectors Derived by Hydrogen Bubble Dynamic Template for Enhanced Li Metal Anode Performance
journal, March 2019

  • Qiu, Hailong; Tang, Tianyu; Asif, Muhammad
  • Advanced Functional Materials, Vol. 29, Issue 19
  • DOI: 10.1002/adfm.201808468

Copper Nitride Nanowires Printed Li with Stable Cycling for Li Metal Batteries in Carbonate Electrolytes
journal, November 2019


A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes
journal, January 2020

  • Chen, Ke; Pathak, Rajesh; Gurung, Ashim
  • Journal of Materials Chemistry A, Vol. 8, Issue 4
  • DOI: 10.1039/c9ta11237e

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.