skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks

Authors:
 [1];  [2];  [2];  [3];  [3]
  1. Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an Shaanxi 710071 China, Department of Radiation Oncology, University of California-Los Angeles, Los Angeles CA 90095 USA
  2. Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an Shaanxi 710071 China
  3. Department of Radiation Oncology, University of California-Los Angeles, Los Angeles CA 90095 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1472187
Grant/Contract Number:  
SC0017057; SC0017687
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Medical Physics
Additional Journal Information:
Journal Name: Medical Physics Journal Volume: 45 Journal Issue: 10; Journal ID: ISSN 0094-2405
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United States
Language:
English

Citation Formats

Tong, Nuo, Gou, Shuiping, Yang, Shuyuan, Ruan, Dan, and Sheng, Ke. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. United States: N. p., 2018. Web. doi:10.1002/mp.13147.
Tong, Nuo, Gou, Shuiping, Yang, Shuyuan, Ruan, Dan, & Sheng, Ke. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. United States. doi:10.1002/mp.13147.
Tong, Nuo, Gou, Shuiping, Yang, Shuyuan, Ruan, Dan, and Sheng, Ke. Wed . "Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks". United States. doi:10.1002/mp.13147.
@article{osti_1472187,
title = {Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks},
author = {Tong, Nuo and Gou, Shuiping and Yang, Shuyuan and Ruan, Dan and Sheng, Ke},
abstractNote = {},
doi = {10.1002/mp.13147},
journal = {Medical Physics},
number = 10,
volume = 45,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/mp.13147

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks
journal, February 2017

  • Ibragimov, Bulat; Xing, Lei
  • Medical Physics, Vol. 44, Issue 2
  • DOI: 10.1002/mp.12045

Evaluation of segmentation methods on head and neck CT: Auto-segmentation challenge 2015
journal, April 2017

  • Raudaschl, Patrik F.; Zaffino, Paolo; Sharp, Gregory C.
  • Medical Physics, Vol. 44, Issue 5
  • DOI: 10.1002/mp.12197

Active appearance models
journal, June 2001

  • Cootes, T. F.; Edwards, G. J.; Taylor, C. J.
  • IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, Issue 6
  • DOI: 10.1109/34.927467

Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks
journal, May 2016

  • Setio, Arnaud Arindra Adiyoso; Ciompi, Francesco; Litjens, Geert
  • IEEE Transactions on Medical Imaging, Vol. 35, Issue 5
  • DOI: 10.1109/TMI.2016.2536809

Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
journal, February 2017


Automatic Segmentation of MR Brain Images With a Convolutional Neural Network
journal, May 2016

  • Moeskops, Pim; Viergever, Max A.; Mendrik, Adrienne M.
  • IEEE Transactions on Medical Imaging, Vol. 35, Issue 5
  • DOI: 10.1109/TMI.2016.2548501

Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation
journal, May 2016

  • Brosch, Tom; Tang, Lisa Y. W.; Yoo, Youngjin
  • IEEE Transactions on Medical Imaging, Vol. 35, Issue 5
  • DOI: 10.1109/TMI.2016.2528821

Active Shape Models-Their Training and Application
journal, January 1995

  • Cootes, T. F.; Taylor, C. J.; Cooper, D. H.
  • Computer Vision and Image Understanding, Vol. 61, Issue 1
  • DOI: 10.1006/cviu.1995.1004

Learning image based surrogate relevance criterion for atlas selection in segmentation
journal, May 2016


Brain tumor segmentation with Deep Neural Networks
journal, January 2017


Worldwide Trends in Incidence Rates for Oral Cavity and Oropharyngeal Cancers
journal, December 2013

  • Chaturvedi, Anil K.; Anderson, William F.; Lortet-Tieulent, Joannie
  • Journal of Clinical Oncology, Vol. 31, Issue 36
  • DOI: 10.1200/JCO.2013.50.3870

Randomized Phase III Trial of Concurrent Accelerated Radiation Plus Cisplatin With or Without Cetuximab for Stage III to IV Head and Neck Carcinoma: RTOG 0522
journal, September 2014

  • Ang, K. Kian; Zhang, Qiang; Rosenthal, David I.
  • Journal of Clinical Oncology, Vol. 32, Issue 27
  • DOI: 10.1200/JCO.2013.53.5633

IMRT for head and neck cancer: reducing xerostomia and dysphagia
journal, August 2016

  • Wang, XiaoShen; Eisbruch, Avraham
  • Journal of Radiation Research, Vol. 57, Issue S1
  • DOI: 10.1093/jrr/rrw047

3D deeply supervised network for automated segmentation of volumetric medical images
journal, October 2017


Hierarchical Vertex Regression-Based Segmentation of Head and Neck CT Images for Radiotherapy Planning
journal, February 2018

  • Wang, Zhensong; Wei, Lifang; Wang, Li
  • IEEE Transactions on Image Processing, Vol. 27, Issue 2
  • DOI: 10.1109/TIP.2017.2768621

A System for Continual Quality Improvement of Normal Tissue Delineation for Radiation Therapy Treatment Planning
journal, August 2012

  • Breunig, Jennifer; Hernandez, Sophy; Lin, Jeffrey
  • International Journal of Radiation Oncology*Biology*Physics, Vol. 83, Issue 5
  • DOI: 10.1016/j.ijrobp.2012.02.003

Measures of the Amount of Ecologic Association Between Species
journal, July 1945


Multiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s disease
journal, May 2018