skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on September 20, 2019

Title: Design of Hollow Nanostructures for Energy Storage, Conversion and Production

Authors:
ORCiD logo [1] ;  [2] ;  [3]
  1. Department of Materials Science and Engineering, Stanford University, Stanford CA 94305 USA
  2. Department of Materials Science and Engineering, Stanford University, Stanford CA 94305 USA, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road Menlo Park CA 94025 USA
  3. State Key Laboratory of Biochemical Engineering, CAS Center for Excellence in Nanoscience, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun Haidian District Beijing 100190 China, Centre for Clean Environment and Energy, Gold Coast Campus Griffith University, Queensland 4222 Australia
Publication Date:
Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
USDOE
Country of Publication:
Germany
Language:
English
OSTI Identifier:
1472180

Wang, Jiangyan, Cui, Yi, and Wang, Dan. Design of Hollow Nanostructures for Energy Storage, Conversion and Production. Germany: N. p., Web. doi:10.1002/adma.201801993.
Wang, Jiangyan, Cui, Yi, & Wang, Dan. Design of Hollow Nanostructures for Energy Storage, Conversion and Production. Germany. doi:10.1002/adma.201801993.
Wang, Jiangyan, Cui, Yi, and Wang, Dan. 2018. "Design of Hollow Nanostructures for Energy Storage, Conversion and Production". Germany. doi:10.1002/adma.201801993.
@article{osti_1472180,
title = {Design of Hollow Nanostructures for Energy Storage, Conversion and Production},
author = {Wang, Jiangyan and Cui, Yi and Wang, Dan},
abstractNote = {},
doi = {10.1002/adma.201801993},
journal = {Advanced Materials},
number = ,
volume = ,
place = {Germany},
year = {2018},
month = {9}
}

Works referenced in this record:

High-performance lithium battery anodes using silicon nanowires
journal, December 2007
  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity
journal, September 2006
  • Lou, X. W.; Wang, Y.; Yuan, C.
  • Advanced Materials, Vol. 18, Issue 17, p. 2325-2329
  • DOI: 10.1002/adma.200600733

Li–O2 and Li–S batteries with high energy storage
journal, January 2012
  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
journal, October 1991
  • O'Regan, Brian; Grätzel, Michael
  • Nature, Vol. 353, Issue 6346, p. 737-740
  • DOI: 10.1038/353737a0

New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy
journal, April 2010
  • Yang, Yuan; McDowell, Matthew T.; Jackson, Ariel
  • Nano Letters, Vol. 10, Issue 4, p. 1486-1491
  • DOI: 10.1021/nl100504q

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009
  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Oriented Nanostructures for Energy Conversion and Storage
journal, September 2008
  • Liu, Jun; Cao, Guozhong; Yang, Zhenguo
  • ChemSusChem, Vol. 1, Issue 8-9, p. 676-697
  • DOI: 10.1002/cssc.200800087

Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972
  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries
journal, February 2013
  • Zheng, Guangyuan; Zhang, Qianfan; Cha, Judy J.
  • Nano Letters, Vol. 13, Issue 3, p. 1265-1270
  • DOI: 10.1021/nl304795g

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000
  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes
journal, September 2011
  • Liu, Gao; Xun, Shidi; Vukmirovic, Nenad
  • Advanced Materials, Vol. 23, Issue 40, p. 4679-4683
  • DOI: 10.1002/adma.201102421

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
journal, January 2013
  • Wei Seh, Zhi; Li, Weiyang; Cha, Judy J.
  • Nature Communications, Vol. 4, Article No. 1331
  • DOI: 10.1038/ncomms2327

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016
  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Issues and challenges facing rechargeable lithium batteries
journal, November 2001
  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Converting Metals into Phosphides  A General Strategy for the Synthesis of Metal Phosphide Nanocrystals
journal, February 2007
  • Henkes, Amanda E.; Vasquez, Yolanda; Schaak, Raymond E.
  • Journal of the American Chemical Society, Vol. 129, Issue 7, p. 1896-1897
  • DOI: 10.1021/ja068502l