DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: H 2 Oxidation Electrocatalysis Enabled by Metal‐to‐Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction

Abstract

Abstract Oxidation of H 2 in a fuel cell converts the chemical energy of the H−H bond into electricity. Electrocatalytic oxidation of H 2 by molecular catalysts typically requires one metal to perform multiple chemical steps: bind H 2 , heterolytically cleave H 2 , and then undergo two oxidation and two deprotonation steps. The electrocatalytic oxidation of H 2 by a cooperative system using Cp*Cr(CO) 3 H and [Fe(diphosphine)(CO) 3 ] + has now been invetigated. A key step of the proposed mechanism is a rarely observed metal‐to‐metal hydrogen atom transfer from the Cr−H complex to the Fe, forming an Fe−H complex that is deprotonated and then oxidized electrochemically. This “division of chemical labor” features Cr interacting with H 2 to cleave the H−H bond, while Fe interfaces with the electrode. Neither metal is required to heterolytically cleave H 2 , so this system provides a very unusual example of a homolytic reaction being a key step in a molecular electrocatalytic process.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Center for Molecular Electrocatalysis Pacific Northwest National Laboratory Richland WA 99352 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1472167
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie
Additional Journal Information:
Journal Name: Angewandte Chemie Journal Volume: 130 Journal Issue: 41; Journal ID: ISSN 0044-8249
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Chambers, Geoffrey M., Wiedner, Eric S., and Bullock, R. Morris. H 2 Oxidation Electrocatalysis Enabled by Metal‐to‐Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction. Germany: N. p., 2018. Web. doi:10.1002/ange.201807510.
Chambers, Geoffrey M., Wiedner, Eric S., & Bullock, R. Morris. H 2 Oxidation Electrocatalysis Enabled by Metal‐to‐Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction. Germany. https://doi.org/10.1002/ange.201807510
Chambers, Geoffrey M., Wiedner, Eric S., and Bullock, R. Morris. Wed . "H 2 Oxidation Electrocatalysis Enabled by Metal‐to‐Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction". Germany. https://doi.org/10.1002/ange.201807510.
@article{osti_1472167,
title = {H 2 Oxidation Electrocatalysis Enabled by Metal‐to‐Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction},
author = {Chambers, Geoffrey M. and Wiedner, Eric S. and Bullock, R. Morris},
abstractNote = {Abstract Oxidation of H 2 in a fuel cell converts the chemical energy of the H−H bond into electricity. Electrocatalytic oxidation of H 2 by molecular catalysts typically requires one metal to perform multiple chemical steps: bind H 2 , heterolytically cleave H 2 , and then undergo two oxidation and two deprotonation steps. The electrocatalytic oxidation of H 2 by a cooperative system using Cp*Cr(CO) 3 H and [Fe(diphosphine)(CO) 3 ] + has now been invetigated. A key step of the proposed mechanism is a rarely observed metal‐to‐metal hydrogen atom transfer from the Cr−H complex to the Fe, forming an Fe−H complex that is deprotonated and then oxidized electrochemically. This “division of chemical labor” features Cr interacting with H 2 to cleave the H−H bond, while Fe interfaces with the electrode. Neither metal is required to heterolytically cleave H 2 , so this system provides a very unusual example of a homolytic reaction being a key step in a molecular electrocatalytic process.},
doi = {10.1002/ange.201807510},
journal = {Angewandte Chemie},
number = 41,
volume = 130,
place = {Germany},
year = {Wed Sep 19 00:00:00 EDT 2018},
month = {Wed Sep 19 00:00:00 EDT 2018}
}

Works referenced in this record:

Molecular Electrocatalysts for Oxidation of Hydrogen Using Earth-Abundant Metals: Shoving Protons Around with Proton Relays
journal, June 2015


Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins
journal, June 2016


Organometallic thermodynamics. Redox couples involving metal-metal bonds
journal, May 1992

  • Pugh, J. Richard; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 114, Issue 10
  • DOI: 10.1021/ja00036a030

Electricity from low-level H2 in still air ? an ultimate test for an oxygen tolerant hydrogenase
journal, January 2006

  • Vincent, Kylie A.; Cracknell, James A.; Clark, Jeremy R.
  • Chemical Communications, Issue 48
  • DOI: 10.1039/b614272a

Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 p K a Units:  Unification of Different Basicity Scales
journal, February 2005

  • Kaljurand, Ivari; Kütt, Agnes; Sooväli, Lilli
  • The Journal of Organic Chemistry, Vol. 70, Issue 3
  • DOI: 10.1021/jo048252w

Carbon-to-Metal Hydrogen Atom Transfer:  Direct Observation Using Time-Resolved Infrared Spectroscopy
journal, November 2005

  • Zhang, Jie; Grills, David C.; Huang, Kuo-Wei
  • Journal of the American Chemical Society, Vol. 127, Issue 45
  • DOI: 10.1021/ja0555724

Intrinsic barriers to atom transfer (abstraction) processes; self-exchange rates for Cp(CO)3M.bul. radical/Cp(CO)3M-X halogen couples
journal, December 1991

  • Song, Jeong Sup; Bullock, R. Morris; Creutz, Carol
  • Journal of the American Chemical Society, Vol. 113, Issue 26
  • DOI: 10.1021/ja00026a029

Electrons from hydrogen
journal, January 2009


Kinetic and Mechanistic Studies of Carbon-to-Metal Hydrogen Atom Transfer Involving Os-Centered Radicals: Evidence for Tunneling
journal, February 2014

  • Lewandowska-Andralojc, Anna; Grills, David C.; Zhang, Jie
  • Journal of the American Chemical Society, Vol. 136, Issue 9
  • DOI: 10.1021/ja4123076

Combining acid–base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase
journal, October 2011

  • Camara, James M.; Rauchfuss, Thomas B.
  • Nature Chemistry, Vol. 4, Issue 1
  • DOI: 10.1038/nchem.1180

[NiFe]Hydrogenase from Citrobacter sp. S-77 Surpasses Platinum as an Electrode for H 2 Oxidation Reaction
journal, June 2014

  • Matsumoto, Takahiro; Eguchi, Shigenobu; Nakai, Hidetaka
  • Angewandte Chemie International Edition, Vol. 53, Issue 34
  • DOI: 10.1002/anie.201404701

Arginine-Containing Ligands Enhance H 2 Oxidation Catalyst Performance
journal, May 2014

  • Dutta, Arnab; Roberts, John A. S.; Shaw, Wendy J.
  • Angewandte Chemie International Edition, Vol. 53, Issue 25
  • DOI: 10.1002/anie.201402304

The rate and mechanism of oxidative addition of H2 to the Cr(CO)3C5Me5 radical—generation of a model for reaction of H2 with the Co(CO)4 radical
journal, July 1999


An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen
journal, February 2013

  • Liu, Tianbiao; DuBois, Daniel L.; Bullock, R. Morris
  • Nature Chemistry, Vol. 5, Issue 3
  • DOI: 10.1038/nchem.1571

One Model, Two Enzymes: Activation of Hydrogen and Carbon Monoxide
journal, June 2017


Manganese-Based Molecular Electrocatalysts for Oxidation of Hydrogen
journal, October 2015


Mechanism of the low-energy photochemical disproportionation reactions of bis(.eta.5-cyclopentadienyl)dimolybdenum hexacarbonyl [(.eta.5-C5H5)2Mo2(CO)6]
journal, September 1983

  • Stiegman, Albert E.; Stieglitz, Marc; Tyler, David R.
  • Journal of the American Chemical Society, Vol. 105, Issue 19
  • DOI: 10.1021/ja00357a012

Two Pathways for Electrocatalytic Oxidation of Hydrogen by a Nickel Bis(diphosphine) Complex with Pendant Amines in the Second Coordination Sphere
journal, June 2013

  • Yang, Jenny Y.; Smith, Stuart E.; Liu, Tianbiao
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja400705a

Catalytic Activity of Thiolate-Bridged Diruthenium Complexes Bearing Pendent Ether Moieties in the Oxidation of Molecular Dihydrogen
journal, December 2016

  • Yuki, Masahiro; Sakata, Ken; Kikuchi, Shoma
  • Chemistry - A European Journal, Vol. 23, Issue 5
  • DOI: 10.1002/chem.201604974

Hydrogen Spillover. Facts and Fiction
journal, February 2012


Radicals: Reactive Intermediates with Translational Potential
journal, September 2016

  • Yan, Ming; Lo, Julian C.; Edwards, Jacob T.
  • Journal of the American Chemical Society, Vol. 138, Issue 39
  • DOI: 10.1021/jacs.6b08856

Arginine-Containing Ligands Enhance H 2 Oxidation Catalyst Performance
journal, May 2014

  • Dutta, Arnab; Roberts, John A. S.; Shaw, Wendy J.
  • Angewandte Chemie, Vol. 126, Issue 25
  • DOI: 10.1002/ange.201402304

Seventeen-electron metal-centered radicals
journal, November 1988


Direct Determination of Equilibrium Potentials for Hydrogen Oxidation/Production by Open Circuit Potential Measurements in Acetonitrile
journal, June 2012

  • Roberts, John A. S.; Bullock, R. Morris
  • Inorganic Chemistry, Vol. 52, Issue 7
  • DOI: 10.1021/ic302461q

H2 and O2 activation by [NiFe]hydrogenases – Insights from model complexes
journal, March 2017


Kinetics and Mechanism of the Hydrogenation of the CpCr(CO) 3 /[CpCr(CO) 3 ] 2 Equilibrium to CpCr(CO) 3 H
journal, May 2014

  • Norton, Jack R.; Spataru, Tudor; Camaioni, Donald M.
  • Organometallics, Vol. 33, Issue 10
  • DOI: 10.1021/om4012399

A direct comparison of the rates of degenerate transfer of electrons, protons, and hydrogen atoms between metal complexes
journal, June 1993

  • Protasiewicz, John D.; Theopold, Klaus H.
  • Journal of the American Chemical Society, Vol. 115, Issue 13
  • DOI: 10.1021/ja00066a025

Measurement of Fast Dimerization Rates by Cyclic Voltammetry: Comparison of the 17e Radicals (.eta.5-C5R5)Cr(CO)3 (R = H, CH3) at Low Temperatures
journal, November 1994

  • Richards, Thomas C.; Geiger, William E.; Baird, Michael C.
  • Organometallics, Vol. 13, Issue 11
  • DOI: 10.1021/om00023a060

[NiFe]Hydrogenase from Citrobacter sp. S-77 Surpasses Platinum as an Electrode for H 2 Oxidation Reaction
journal, June 2014

  • Matsumoto, Takahiro; Eguchi, Shigenobu; Nakai, Hidetaka
  • Angewandte Chemie, Vol. 126, Issue 34
  • DOI: 10.1002/ange.201404701

Oxidation of Dihydrogen by Iridium Complexes of Redox-Active Ligands
journal, April 2010

  • Ringenberg, Mark R.; Nilges, Mark J.; Rauchfuss, Thomas B.
  • Organometallics, Vol. 29, Issue 8
  • DOI: 10.1021/om9010593

Radical Isomerization and Cycloisomerization Initiated by H• Transfer
journal, June 2016

  • Li, Gang; Kuo, Jonathan L.; Han, Arthur
  • Journal of the American Chemical Society, Vol. 138, Issue 24
  • DOI: 10.1021/jacs.6b03509

Molecular Catalysis of H 2 Evolution: Diagnosing Heterolytic versus Homolytic Pathways
journal, September 2014

  • Costentin, Cyrille; Dridi, Hachem; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 136, Issue 39
  • DOI: 10.1021/ja505845t

Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators
journal, June 2016


Kinetic and thermodynamic acidity of hydrido transition-metal complexes. 3. Thermodynamic acidity of common mononuclear carbonyl hydrides
journal, April 1986

  • Moore, Eric J.; Sullivan, Jeffrey M.; Norton, Jack R.
  • Journal of the American Chemical Society, Vol. 108, Issue 9
  • DOI: 10.1021/ja00269a022

Heat of reaction of the Cr(CO)3(C5Me5) radical with hydrogen and related reactions. Relative and absolute bond strengths in the complexes H-Cr(CO)2(L)(C5R5)
journal, July 1990

  • Kiss, Gabor; Zhang, Kai; Mukerjee, Shakti L.
  • Journal of the American Chemical Society, Vol. 112, Issue 14
  • DOI: 10.1021/ja00170a050

Cooperative Electrocatalytic O 2 Reduction Involving Co(salophen) with p- Hydroquinone as an Electron–Proton Transfer Mediator
journal, December 2017

  • Anson, Colin W.; Stahl, Shannon S.
  • Journal of the American Chemical Society, Vol. 139, Issue 51
  • DOI: 10.1021/jacs.7b11362

One Model, Two Enzymes: Activation of Hydrogen and Carbon Monoxide
journal, June 2017

  • Ogo, Seiji; Mori, Yuki; Ando, Tatsuya
  • Angewandte Chemie International Edition, Vol. 56, Issue 33
  • DOI: 10.1002/anie.201704864

Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems.
journal, April 1964

  • Nicholson, R. S.; Shain, Irving
  • Analytical Chemistry, Vol. 36, Issue 4, p. 706-723
  • DOI: 10.1021/ac60210a007

Thiolate-Bridged Dinuclear Ruthenium and Iron Complexes as Robust and Efficient Catalysts toward Oxidation of Molecular Dihydrogen in Protic Solvents
journal, March 2015

  • Yuki, Masahiro; Sakata, Ken; Hirao, Yoshifumi
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/jacs.5b00584

Hydrogen atom transfer reactions of transition-metal hydrides. Kinetics and mechanism of the hydrogenation of .alpha.-cyclopropylstyrene by metal carbonyl hydrides
journal, September 1990

  • Bullock, R. Morris; Samsel, Edward G.
  • Journal of the American Chemical Society, Vol. 112, Issue 19
  • DOI: 10.1021/ja00175a024

Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis
journal, July 2008

  • Cracknell, James A.; Vincent, Kylie A.; Armstrong, Fraser A.
  • Chemical Reviews, Vol. 108, Issue 7
  • DOI: 10.1021/cr0680639

Equilibrium between [CpCr(CO)3]2 and CpCr(CO)3. Thermodynamics of chromium-chromium single-bond cleavage
journal, January 1988

  • McLain, Stephan J.
  • Journal of the American Chemical Society, Vol. 110, Issue 2
  • DOI: 10.1021/ja00210a079

Hydrogenases
journal, March 2014

  • Lubitz, Wolfgang; Ogata, Hideaki; Rüdiger, Olaf
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr4005814

Relative rates of hydrogen atom (H.cntdot.) transfer from transition-metal hydrides to trityl radicals
journal, June 1991

  • Eisenberg, David C.; Lawrie, Christophe J. C.; Moody, Anne E.
  • Journal of the American Chemical Society, Vol. 113, Issue 13
  • DOI: 10.1021/ja00013a026

Hydrogen Activation by Biomimetic [NiFe]-Hydrogenase Model Containing Protected Cyanide Cofactors
journal, July 2013

  • Manor, Brian C.; Rauchfuss, Thomas B.
  • Journal of the American Chemical Society, Vol. 135, Issue 32
  • DOI: 10.1021/ja404580r

Aqua, Alcohol, and Acetonitrile Adducts of Tris(perfluorophenyl)borane:  Evaluation of Brønsted Acidity and Ligand Lability with Experimental and Computational Methods
journal, November 2000

  • Bergquist, Catherine; Bridgewater, Brian M.; Harlan, C. Jeff
  • Journal of the American Chemical Society, Vol. 122, Issue 43
  • DOI: 10.1021/ja001915g