DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface

Abstract

Solid-state Li metal batteries technology is extremely attractive, owing to the high energy density, long lifespans, and better safety. A key obstacle in this technology is the unstable Li/solid-state electrolyte (SSE) interface involving electrolyte reduction by Li. Here we report a novel approach based on the use of a nanocomposite consisting of organic elastomeric salts (LiO-(CH2O)n-Li) and inorganic nanoparticle salts (LiF, -NSO2-Li, Li2O), which serve as an interphase to protect Li10GeP2S12 (LGPS), a highly conductive but reducible SSE. The nanocomposite is formed in situ on Li via the electrochemical decomposition of a liquid electrolyte, therefore possessing excellent chemical and electrochemical stability, affinity for Li and LGPS, and limited interfacial resistance. XPS depth profiling and SEM results show that the nanocomposite effectively restrained the reduction of LGPS. Stable Li electrodeposition over 3000 h and a 200-cycle life for a full cell were achieved. Finally, these findings may provide a new direction in stabilizing the interface between Li and different reducible SSEs.

Authors:
 [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Pennsylvania State Univ., University Park, PA (United States)
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; National Science Foundation (NSF)
OSTI Identifier:
1657231
Alternate Identifier(s):
OSTI ID: 1472147
Grant/Contract Number:  
EE0008198; DMR-1807116
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 57; Journal Issue: 41; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; 42 ENGINEERING; Interfaces; solid-state electrolyte; lithium metal anode; electrochemistry; batteries

Citation Formats

Gao, Yue, Wang, Daiwei, Li, Yuguang C., Yu, Zhaoxin, Mallouk, Thomas E., and Wang, Donghai. Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface. United States: N. p., 2018. Web. doi:10.1002/anie.201807304.
Gao, Yue, Wang, Daiwei, Li, Yuguang C., Yu, Zhaoxin, Mallouk, Thomas E., & Wang, Donghai. Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface. United States. https://doi.org/10.1002/anie.201807304
Gao, Yue, Wang, Daiwei, Li, Yuguang C., Yu, Zhaoxin, Mallouk, Thomas E., and Wang, Donghai. Wed . "Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface". United States. https://doi.org/10.1002/anie.201807304. https://www.osti.gov/servlets/purl/1657231.
@article{osti_1657231,
title = {Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface},
author = {Gao, Yue and Wang, Daiwei and Li, Yuguang C. and Yu, Zhaoxin and Mallouk, Thomas E. and Wang, Donghai},
abstractNote = {Solid-state Li metal batteries technology is extremely attractive, owing to the high energy density, long lifespans, and better safety. A key obstacle in this technology is the unstable Li/solid-state electrolyte (SSE) interface involving electrolyte reduction by Li. Here we report a novel approach based on the use of a nanocomposite consisting of organic elastomeric salts (LiO-(CH2O)n-Li) and inorganic nanoparticle salts (LiF, -NSO2-Li, Li2O), which serve as an interphase to protect Li10GeP2S12 (LGPS), a highly conductive but reducible SSE. The nanocomposite is formed in situ on Li via the electrochemical decomposition of a liquid electrolyte, therefore possessing excellent chemical and electrochemical stability, affinity for Li and LGPS, and limited interfacial resistance. XPS depth profiling and SEM results show that the nanocomposite effectively restrained the reduction of LGPS. Stable Li electrodeposition over 3000 h and a 200-cycle life for a full cell were achieved. Finally, these findings may provide a new direction in stabilizing the interface between Li and different reducible SSEs.},
doi = {10.1002/anie.201807304},
journal = {Angewandte Chemie (International Edition)},
number = 41,
volume = 57,
place = {United States},
year = {Wed Aug 08 00:00:00 EDT 2018},
month = {Wed Aug 08 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 126 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Review—Advances in Anode and Electrolyte Materials for the Progress of Lithium-Ion and beyond Lithium-Ion Batteries
journal, January 2015

  • Hassoun, Jusef; Scrosati, Bruno
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0191514jes

Inorganic solid Li ion conductors: An overview
journal, June 2009


Ceramic and polymeric solid electrolytes for lithium-ion batteries
journal, August 2010


Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects
journal, May 2017


Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte
journal, July 2016

  • Zhou, Weidong; Wang, Shaofei; Li, Yutao
  • Journal of the American Chemical Society, Vol. 138, Issue 30
  • DOI: 10.1021/jacs.6b05341

Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries
journal, April 2018

  • Li, Yutao; Chen, Xi; Dolocan, Andrei
  • Journal of the American Chemical Society, Vol. 140, Issue 20
  • DOI: 10.1021/jacs.8b03106

High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4
journal, January 2013

  • Liu, Zengcai; Fu, Wujun; Payzant, E. Andrew
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 975-978
  • DOI: 10.1021/ja3110895

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries
journal, October 2017

  • Gao, Yue; Zhao, Yuming; Li, Yuguang C.
  • Journal of the American Chemical Society, Vol. 139, Issue 43
  • DOI: 10.1021/jacs.7b06437

Interface Stability in Solid-State Batteries
journal, December 2015


Interface Limited Lithium Transport in Solid-State Batteries
journal, December 2013

  • Santhanagopalan, Dhamodaran; Qian, Danna; McGilvray, Thomas
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 2
  • DOI: 10.1021/jz402467x

Interfacial Challenges in Solid-State Li Ion Batteries
journal, October 2015

  • Luntz, Alan C.; Voss, Johannes; Reuter, Karsten
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b02352

Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries
journal, January 2017

  • Kerman, Kian; Luntz, Alan; Viswanathan, Venkatasubramanian
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1571707jes

Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission
journal, May 2015


Interfacial instability of amorphous LiPON against lithium: A combined Density Functional Theory and spectroscopic study
journal, June 2017


Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy
journal, October 2015


Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li 10 GeP 2 S 12 at the Lithium Metal Anode
journal, March 2016


Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes
journal, October 2013

  • Hartmann, Pascal; Leichtweiss, Thomas; Busche, Martin R.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 41
  • DOI: 10.1021/jp4051275

Electrochemical Stability of Li 10 GeP 2 S 12 and Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, January 2016

  • Han, Fudong; Zhu, Yizhou; He, Xingfeng
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201501590

Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes
journal, May 2018


Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences
journal, December 2017

  • Wang, Shaofei; Xu, Henghui; Li, Wangda
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b09531

Lithium Superionic Conducting Oxysulfide Solid Electrolyte with Excellent Stability against Lithium Metal for All-Solid-State Cells
journal, November 2015

  • Tao, Yicheng; Chen, Shaojie; Liu, Deng
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0311602jes

High-Performance All-Solid-State Lithium-Sulfur Batteries Enabled by Amorphous Sulfur-Coated Reduced Graphene Oxide Cathodes
journal, May 2017

  • Yao, Xiayin; Huang, Ning; Han, Fudong
  • Advanced Energy Materials, Vol. 7, Issue 17
  • DOI: 10.1002/aenm.201602923

A quaternary sodium superionic conductor - Na10.8Sn1.9PS11.8
journal, May 2018


Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries
journal, February 2018


High-capacity thin film lithium batteries with sulfide solid electrolytes
journal, May 2012


Interface Re-Engineering of Li 10 GeP 2 S 12 Electrolyte and Lithium anode for All-Solid-State Lithium Batteries with Ultralong Cycle Life
journal, January 2018

  • Zhang, Zhihua; Chen, Shaojie; Yang, Jing
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 3
  • DOI: 10.1021/acsami.7b16176

Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode
journal, March 2017


An insight into intrinsic interfacial properties between Li metals and Li 10 GeP 2 S 12 solid electrolytes
journal, January 2017

  • Chen, Bingbing; Ju, Jiangwei; Ma, Jun
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 46
  • DOI: 10.1039/C7CP05253G

Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes
journal, July 2017

  • Porz, Lukas; Swamy, Tushar; Sheldon, Brian W.
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201701003

Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode
text, January 2017

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • Digital Repository at the University of Maryland
  • DOI: 10.13016/m2p26q396

Works referencing / citing this record:

Solid‐State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide‐Based All‐Solid‐State Lithium Metal Batteries
journal, March 2019

  • Wang, Changhong; Adair, Keegan R.; Liang, Jianwen
  • Advanced Functional Materials, Vol. 29, Issue 26
  • DOI: 10.1002/adfm.201900392

High‐Performance Li–SeS x All‐Solid‐State Lithium Batteries
journal, March 2019


Sulfide‐Based Solid‐State Electrolytes: Synthesis, Stability, and Potential for All‐Solid‐State Batteries
journal, August 2019


A 3D and Stable Lithium Anode for High‐Performance Lithium–Iodine Batteries
journal, June 2019


An Air‐Stable and Dendrite‐Free Li Anode for Highly Stable All‐Solid‐State Sulfide‐Based Li Batteries
journal, August 2019

  • Liang, Jianwen; Li, Xiaona; Zhao, Yang
  • Advanced Energy Materials, Vol. 9, Issue 38
  • DOI: 10.1002/aenm.201902125

A Versatile Sn‐Substituted Argyrodite Sulfide Electrolyte for All‐Solid‐State Li Metal Batteries
journal, January 2020

  • Zhao, Feipeng; Liang, Jianwen; Yu, Chuang
  • Advanced Energy Materials, Vol. 10, Issue 9
  • DOI: 10.1002/aenm.201903422

Design Principles of the Anode–Electrolyte Interface for All Solid‐State Lithium Metal Batteries
journal, October 2019


Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte
journal, April 2019


Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
journal, March 2019


Designing solid-state electrolytes for safe, energy-dense batteries
journal, February 2020


A functional-gradient-structured ultrahigh modulus solid polymer electrolyte for all-solid-state lithium metal batteries
journal, January 2019

  • Liu, Jie; Zhou, Jinqiu; Wang, Mengfan
  • Journal of Materials Chemistry A, Vol. 7, Issue 42
  • DOI: 10.1039/c9ta07876b

Building Better Batteries in the Solid State: A Review
journal, November 2019

  • Mauger, Alain; Julien, Christian M.; Paolella, Andrea
  • Materials, Vol. 12, Issue 23, p. 3892
  • DOI: 10.3390/ma12233892