DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solving protein structure from sparse serial microcrystal diffraction data at a storage-ring synchrotron source

Abstract

In recent years, the success of serial femtosecond crystallography and the paucity of beamtime at X-ray free-electron lasers have motivated the development of serial microcrystallography experiments at storage-ring synchrotron sources. However, especially at storage-ring sources, if a crystal is too small it will have suffered significant radiation damage before diffracting a sufficient number of X-rays into Bragg peaks for peak-indexing software to determine the crystal orientation. As a consequence, the data frames of small crystals often cannot be indexed and are discarded. Introduced here is a method based on the expand–maximize–compress (EMC) algorithm to solve protein structures, specifically from data frames for which indexing methods fail because too few X-rays are diffracted into Bragg peaks. The method is demonstrated on a real serial microcrystallography data set whose signals are too weak to be indexed by conventional methods. In spite of the daunting background scatter from the sample-delivery medium, it was still possible to solve the protein structure at 2.1 Å resolution. The ability of the EMC algorithm to analyze weak data frames will help to reduce sample consumption. Furthermore, it will also allow serial microcrystallography to be performed with crystals that are otherwise too small to be feasibly analyzed atmore » storage-ring sources.« less

Authors:
 [1];  [1];  [1];  [1];  [2];  [2];  [3];  [2];  [3];  [2];  [1]; ORCiD logo [1]
  1. Cornell Univ., Ithaca, NY (United States)
  2. Arizona State Univ., Tempe, AZ (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Institutes of Health (NIH), National Cancer Institute; National Institutes of Health (NIH), National Institute of General Medical Sciences; USDOE
OSTI Identifier:
1472125
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
IUCrJ
Additional Journal Information:
Journal Volume: 5; Journal Issue: 5; Journal ID: ISSN 2052-2525
Publisher:
International Union of Crystallography
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; X-ray serial microcrystallography; sparse data; EMC algorithm; protein microcrystallography; storage-ring synchrotron sources

Citation Formats

Lan, Ti -Yen, Wierman, Jennifer L., Tate, Mark W., Philipp, Hugh T., Martin-Garcia, Jose M., Zhu, Lan, Kissick, David, Fromme, Petra, Fischetti, Robert F., Liu, Wei, Elser, Veit, and Gruner, Sol M. Solving protein structure from sparse serial microcrystal diffraction data at a storage-ring synchrotron source. United States: N. p., 2018. Web. doi:10.1107/S205225251800903X.
Lan, Ti -Yen, Wierman, Jennifer L., Tate, Mark W., Philipp, Hugh T., Martin-Garcia, Jose M., Zhu, Lan, Kissick, David, Fromme, Petra, Fischetti, Robert F., Liu, Wei, Elser, Veit, & Gruner, Sol M. Solving protein structure from sparse serial microcrystal diffraction data at a storage-ring synchrotron source. United States. https://doi.org/10.1107/S205225251800903X
Lan, Ti -Yen, Wierman, Jennifer L., Tate, Mark W., Philipp, Hugh T., Martin-Garcia, Jose M., Zhu, Lan, Kissick, David, Fromme, Petra, Fischetti, Robert F., Liu, Wei, Elser, Veit, and Gruner, Sol M. Fri . "Solving protein structure from sparse serial microcrystal diffraction data at a storage-ring synchrotron source". United States. https://doi.org/10.1107/S205225251800903X. https://www.osti.gov/servlets/purl/1472125.
@article{osti_1472125,
title = {Solving protein structure from sparse serial microcrystal diffraction data at a storage-ring synchrotron source},
author = {Lan, Ti -Yen and Wierman, Jennifer L. and Tate, Mark W. and Philipp, Hugh T. and Martin-Garcia, Jose M. and Zhu, Lan and Kissick, David and Fromme, Petra and Fischetti, Robert F. and Liu, Wei and Elser, Veit and Gruner, Sol M.},
abstractNote = {In recent years, the success of serial femtosecond crystallography and the paucity of beamtime at X-ray free-electron lasers have motivated the development of serial microcrystallography experiments at storage-ring synchrotron sources. However, especially at storage-ring sources, if a crystal is too small it will have suffered significant radiation damage before diffracting a sufficient number of X-rays into Bragg peaks for peak-indexing software to determine the crystal orientation. As a consequence, the data frames of small crystals often cannot be indexed and are discarded. Introduced here is a method based on the expand–maximize–compress (EMC) algorithm to solve protein structures, specifically from data frames for which indexing methods fail because too few X-rays are diffracted into Bragg peaks. The method is demonstrated on a real serial microcrystallography data set whose signals are too weak to be indexed by conventional methods. In spite of the daunting background scatter from the sample-delivery medium, it was still possible to solve the protein structure at 2.1 Å resolution. The ability of the EMC algorithm to analyze weak data frames will help to reduce sample consumption. Furthermore, it will also allow serial microcrystallography to be performed with crystals that are otherwise too small to be feasibly analyzed at storage-ring sources.},
doi = {10.1107/S205225251800903X},
journal = {IUCrJ},
number = 5,
volume = 5,
place = {United States},
year = {Fri Jul 20 00:00:00 EDT 2018},
month = {Fri Jul 20 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Linking Crystallographic Model and Data Quality
journal, May 2012


Low-dose fixed-target serial synchrotron crystallography
journal, March 2017

  • Owen, Robin L.; Axford, Danny; Sherrell, Darren A.
  • Acta Crystallographica Section D Structural Biology, Vol. 73, Issue 4, p. 373-378
  • DOI: 10.1107/S2059798317002996

Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams
journal, January 2015

  • Botha, Sabine; Nass, Karol; Barends, Thomas R. M.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 71, Issue 2
  • DOI: 10.1107/S1399004714026327

Serial crystallography on in vivo grown microcrystals using synchrotron radiation
journal, February 2014


Room-temperature macromolecular serial crystallography using synchrotron radiation
journal, May 2014


Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography
journal, February 2014

  • Weierstall, Uwe; James, Daniel; Wang, Chong
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4309

Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

Reconstructing three-dimensional protein crystal intensities from sparse unoriented two-axis X-ray diffraction patterns
journal, June 2017

  • Lan, Ti-Yen; Wierman, Jennifer L.; Tate, Mark W.
  • Journal of Applied Crystallography, Vol. 50, Issue 4
  • DOI: 10.1107/S1600576717006537

Liquid Water: Molecular Correlation Functions from X‐Ray Diffraction
journal, September 1971

  • Narten, A. H.; Levy, H. A.
  • The Journal of Chemical Physics, Vol. 55, Issue 5
  • DOI: 10.1063/1.1676403

Real-Space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames
journal, January 2014

  • Ayyer, Kartik; Philipp, Hugh T.; Tate, Mark W.
  • Optics Express, Vol. 22, Issue 3
  • DOI: 10.1364/OE.22.002403

High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography
journal, May 2012


Solving structure with sparse, randomly-oriented x-ray data
journal, January 2012

  • Philipp, Hugh T.; Ayyer, Kartik; Tate, Mark W.
  • Optics Express, Vol. 20, Issue 12
  • DOI: 10.1364/OE.20.013129

Determination of crystallographic intensities from sparse data
journal, January 2015


Femtosecond protein nanocrystallography—data analysis methods
journal, January 2010

  • Kirian, Richard A.; Wang, Xiaoyu; Weierstall, Uwe
  • Optics Express, Vol. 18, Issue 6
  • DOI: 10.1364/OE.18.005713

Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation
journal, May 2017

  • Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett
  • IUCrJ, Vol. 4, Issue 4, p. 439-454
  • DOI: 10.1107/S205225251700570X

Femtosecond X-ray protein nanocrystallography
journal, February 2011

  • Chapman, Henry N.; Fromme, Petra; Barty, Anton
  • Nature, Vol. 470, Issue 7332, p. 73-77
  • DOI: 10.1038/nature09750

Continuous diffraction of molecules and disordered molecular crystals
journal, July 2017

  • Chapman, Henry N.; Yefanov, Oleksandr M.; Ayyer, Kartik
  • Journal of Applied Crystallography, Vol. 50, Issue 4
  • DOI: 10.1107/S160057671700749X

Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering
journal, May 2016

  • Roedig, Philip; Duman, Ramona; Sanchez-Weatherby, Juan
  • Journal of Applied Crystallography, Vol. 49, Issue 3
  • DOI: 10.1107/S1600576716006348

On the treatment of negative intensity observations
journal, July 1978


Lipidic cubic phase serial millisecond crystallography using synchrotron radiation
journal, March 2015


Protein crystal structure from non-oriented, single-axis sparse X-ray data
journal, January 2016


Overview of refinement procedures within REFMAC 5: utilizing data from different sources
journal, March 2018

  • Kovalevskiy, Oleg; Nicholls, Robert A.; Long, Fei
  • Acta Crystallographica Section D Structural Biology, Vol. 74, Issue 3
  • DOI: 10.1107/S2059798318000979

Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers
journal, February 2017

  • Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira
  • Nature Methods, Vol. 14, Issue 4
  • DOI: 10.1038/nmeth.4195

Viscous hydrophilic injection matrices for serial crystallography
journal, May 2017


CCP 4 i 2: the new graphical user interface to the CCP 4 program suite
journal, February 2018

  • Potterton, Liz; Agirre, Jon; Ballard, Charles
  • Acta Crystallographica Section D Structural Biology, Vol. 74, Issue 2
  • DOI: 10.1107/S2059798317016035

Molecular replacement with MOLREP
journal, December 2009

  • Vagin, Alexei; Teplyakov, Alexei
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042589

Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
journal, August 2015


A novel inert crystal delivery medium for serial femtosecond crystallography
journal, June 2015


Reconstruction algorithm for single-particle diffraction imaging experiments
journal, August 2009


Cryptotomography: Reconstructing 3D Fourier Intensities from Randomly Oriented Single-Shot Diffraction Patterns
journal, June 2010


Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q -range
journal, February 2013

  • Skinner, Lawrie B.; Huang, Congcong; Schlesinger, Daniel
  • The Journal of Chemical Physics, Vol. 138, Issue 7
  • DOI: 10.1063/1.4790861

Biostructural Science Inspired by Next-Generation X-Ray Sources
journal, June 2015


Macromolecular diffractive imaging using imperfect crystals
journal, February 2016

  • Ayyer, Kartik; Yefanov, Oleksandr M.; Oberthür, Dominik
  • Nature, Vol. 530, Issue 7589, p. 202-206
  • DOI: 10.1038/nature16949

X-ray Scattering Studies of Protein Structural Dynamics
journal, May 2017


Cryptotomography: Reconstructing 3D Fourier Intensities from Randomly Oriented Single-Shot Diffraction Patterns
text, January 2010

  • Loh, N. D.; Bogan, M. J.; Elser, V.
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/phppubdb-14441

Macromolecular diffractive imaging using imperfect crystals
text, January 2016

  • Ayyer, Kartik; Yefanov, Oleksandr; Oberthür, Dominik
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2016-01028

Room-Temperature Macromolecular Crystallography Using a Micro-Patterned Silicon Chip with Minimal Background Scattering
text, January 2016

  • Roedig, Philip; Duman, Ramona; Sanchez-Weatherby, Juan
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2016-02690

A reconstruction algorithm for single-particle diffraction imaging experiments
journal, August 2009

  • Loh, Duane Ne-Te; Elser, Veit
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 65, Issue a1
  • DOI: 10.1107/s0108767309098584

Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
text, January 2015

  • Fromme, Raimund; Ishchenko, Andrii; Metz, Markus
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2015-04280

Lipidic cubic phase serial millisecond crystallography using synchrotron radiation
text, January 2015


Continuous diffraction of molecules and disordered molecular crystals
text, January 2017

  • Chapman, Henry N.; Yefanov, Oleksandr; Ayyer, Kartik
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2017-06978

Works referencing / citing this record:

ClickX : a visualization-based program for preprocessing of serial crystallography data
journal, May 2019

  • Li, Xuanxuan; Li, Chufeng; Liu, Haiguang
  • Journal of Applied Crystallography, Vol. 52, Issue 3
  • DOI: 10.1107/s1600576719005363

Fixed-target serial oscillation crystallography at room temperature
journal, February 2019


Solving protein structure from sparse serial microcrystal diffraction data at a storage ring synchrotron source
dataset, January 2018

  • Lan, Ti-Yen
  • Coherent X-ray Imaging Data Bank (Lawrence Berkeley National Laboratory); , SLAC
  • DOI: 10.11577/1459500

Fixed-target serial oscillation crystallography at room temperature
text, January 2019


Experimental 3D coherent diffractive imaging from photon-sparse random projections
text, January 2019

  • Giewekemeyer, K.; Aquila, A.; Loh, N. -T. D.
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-02014

Fixed-target serial oscillation crystallography at room temperature
text, January 2019