skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spatial symmetry breaking in single-frequency CCP discharge with transverse magnetic field

Abstract

An independent control of the flux and energy of ions impacting on an object immersed in a plasma is often desirable for many industrial processes such as microelectronics manufacturing. We demonstrate that a simultaneous control of these quantities is possible by a suitable choice of a static magnetic field applied parallel to the plane electrodes in a standard single frequency capacitively coupled plasma device. Our particle-in-cell simulations show a 60% reduction in the sheath width (that improves control of ion energy) and a fourfold increase in the ion flux at the electrode as a consequence of the altered ion and electron dynamics due to the ambient magnetic field. A detailed analysis of the particle dynamics is presented, and the optimized operating parameters of the device are discussed. In conclusion, the present technique offers a simple and attractive alternative to conventional dual frequency based devices that often suffer from undesirable limitations arising from frequency coupling and electromagnetic effects.

Authors:
 [1]; ORCiD logo [2];  [2];  [3];  [3]
  1. Institute for Plasma Research, Gandhinagar (India); Homi Babha National Institute, Mumbai (India)
  2. Princeton Univ., Princeton, NJ (United States)
  3. Institute for Plasma Research, Gandhinagar (India)
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1472113
Grant/Contract Number:  
[AC02-09CH11466]
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
[ Journal Volume: 25; Journal Issue: 8]; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Sharma, Sarveshwar, Kaganovich, Igor D., Khrabrov, Alexander V., Kaw, Predhiman, and Sen, Abhijit. Spatial symmetry breaking in single-frequency CCP discharge with transverse magnetic field. United States: N. p., 2018. Web. doi:10.1063/1.5033350.
Sharma, Sarveshwar, Kaganovich, Igor D., Khrabrov, Alexander V., Kaw, Predhiman, & Sen, Abhijit. Spatial symmetry breaking in single-frequency CCP discharge with transverse magnetic field. United States. doi:10.1063/1.5033350.
Sharma, Sarveshwar, Kaganovich, Igor D., Khrabrov, Alexander V., Kaw, Predhiman, and Sen, Abhijit. Tue . "Spatial symmetry breaking in single-frequency CCP discharge with transverse magnetic field". United States. doi:10.1063/1.5033350. https://www.osti.gov/servlets/purl/1472113.
@article{osti_1472113,
title = {Spatial symmetry breaking in single-frequency CCP discharge with transverse magnetic field},
author = {Sharma, Sarveshwar and Kaganovich, Igor D. and Khrabrov, Alexander V. and Kaw, Predhiman and Sen, Abhijit},
abstractNote = {An independent control of the flux and energy of ions impacting on an object immersed in a plasma is often desirable for many industrial processes such as microelectronics manufacturing. We demonstrate that a simultaneous control of these quantities is possible by a suitable choice of a static magnetic field applied parallel to the plane electrodes in a standard single frequency capacitively coupled plasma device. Our particle-in-cell simulations show a 60% reduction in the sheath width (that improves control of ion energy) and a fourfold increase in the ion flux at the electrode as a consequence of the altered ion and electron dynamics due to the ambient magnetic field. A detailed analysis of the particle dynamics is presented, and the optimized operating parameters of the device are discussed. In conclusion, the present technique offers a simple and attractive alternative to conventional dual frequency based devices that often suffer from undesirable limitations arising from frequency coupling and electromagnetic effects.},
doi = {10.1063/1.5033350},
journal = {Physics of Plasmas},
number = [8],
volume = [25],
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Experimental evidence of the increased transport due to the wall bounded magnetic drift in low temperature plasma
journal, May 2014

  • Gaboriau, F.; Baude, R.; Hagelaar, G. J. M.
  • Applied Physics Letters, Vol. 104, Issue 21
  • DOI: 10.1063/1.4880717

Plasma transport across magnetic field lines in low-temperature plasma sources
journal, November 2011


Measurement of electron energy distribution in low-pressure RF discharges
journal, March 1992

  • Godyak, V. A.; Piejak, R. B.; Alexandrovich, B. M.
  • Plasma Sources Science and Technology, Vol. 1, Issue 1
  • DOI: 10.1088/0963-0252/1/1/006

The effects of a small transverse magnetic field upon a capacitively coupled RF discharge
journal, January 1995

  • Hutchinson, D. A. W.; Turner, M. M.; Doyle, R. A.
  • IEEE Transactions on Plasma Science, Vol. 23, Issue 4
  • DOI: 10.1109/27.467985

Revisiting the anomalous RF field penetration into a warm plasma
journal, June 2006

  • Kaganovich, I. D.; Polomarov, O. V.; Theodosiou, C. E.
  • IEEE Transactions on Plasma Science, Vol. 34, Issue 3
  • DOI: 10.1109/TPS.2006.873253

Evolution of the electron-energy-distribution function during rf discharge transition to the high-voltage mode
journal, January 1992

  • Godyak, V. A.; Piejak, R. B.; Alexandrovich, B. M.
  • Physical Review Letters, Vol. 68, Issue 1
  • DOI: 10.1103/PhysRevLett.68.40

Analytical model of a dual frequency capacitive sheath
journal, July 2003


Role of transverse magnetic field in the capacitive discharge
journal, August 2011


Analytical solution for capacitive RF sheath
journal, January 1988

  • Lieberman, M. A.
  • IEEE Transactions on Plasma Science, Vol. 16, Issue 6
  • DOI: 10.1109/27.16552

Collisionless Heating in Capacitive Discharges Enhanced by Dual-Frequency Excitation
journal, May 2006


Stochastic heating in single and dual frequency capacitive discharges
journal, May 2006

  • Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2203949

The electrical asymmetry effect in capacitively coupled radio-frequency discharges
journal, April 2011


Anomalous Capacitive Sheath with Deep Radio-Frequency Electric-Field Penetration
journal, December 2002


Simulation study of stochastic heating in single-frequency capacitively coupled discharges with critical evaluation of analytical models
journal, June 2013


Ion Bombardment Secondaty Electron Maintenance of Steady RF Discharge
journal, April 1986


Model of magnetically enhanced, capacitive RF discharges
journal, April 1991

  • Lieberman, M. A.; Lichtenberg, A. J.; Savas, S. E.
  • IEEE Transactions on Plasma Science, Vol. 19, Issue 2
  • DOI: 10.1109/27.106813

Modeling of magnetically enhanced capacitively coupled plasma sources: Ar discharges
journal, August 2003

  • Kushner, Mark J.
  • Journal of Applied Physics, Vol. 94, Issue 3
  • DOI: 10.1063/1.1587887

Structure of the velocity distribution of sheath-accelerated secondary electrons in an asymmetric RF-dc discharge
journal, August 2015

  • Khrabrov, Alexander V.; Kaganovich, Igor D.; Ventzek, Peter L. G.
  • Plasma Sources Science and Technology, Vol. 24, Issue 5
  • DOI: 10.1088/0963-0252/24/5/054003

Critical evaluation of analytical models for stochastic heating in dual-frequency capacitive discharges
journal, June 2013


Direct measurement of spatial electron density oscillations in a dual frequency capacitive plasma
journal, August 2008

  • Karkari, S. K.; Ellingboe, A. R.; Gaman, C.
  • Applied Physics Letters, Vol. 93, Issue 7
  • DOI: 10.1063/1.2971236

Independent control of ion density and ion bombardment energy in a dual RF excitation plasma
journal, January 1993

  • Goto, H. H.; Lowe, H. -D.; Ohmi, T.
  • IEEE Transactions on Semiconductor Manufacturing, Vol. 6, Issue 1
  • DOI: 10.1109/66.210658

Modeling of magnetically enhanced capacitively coupled plasma sources: Ar/C4F8/O2 discharges
journal, February 2004

  • Vasenkov, Alex V.; Kushner, Mark J.
  • Journal of Applied Physics, Vol. 95, Issue 3
  • DOI: 10.1063/1.1633661

Magnetically enhanced reactive ion etching (MERIE) with different field configurations
journal, September 1989


Magnetical asymmetric effect in geometrically and electrically symmetric capacitively coupled plasma
journal, June 2017

  • Yang, Shali; Zhang, Ya; Wang, Hongyu
  • Plasma Processes and Polymers, Vol. 14, Issue 12
  • DOI: 10.1002/ppap.201700087

Influence of emitted electrons transiting between surfaces on plasma-surface interaction
journal, September 2013

  • Campanell, Michael; Wang, Hongyue
  • Applied Physics Letters, Vol. 103, Issue 10
  • DOI: 10.1063/1.4820352

Standing wave and skin effects in large-area, high-frequency capacitive discharges
journal, June 2002

  • Lieberman, M. A.; Booth, J. P.; Chabert, P.
  • Plasma Sources Science and Technology, Vol. 11, Issue 3
  • DOI: 10.1088/0963-0252/11/3/310

Power dissipated in low‐pressure radio‐frequency discharge plasmas
journal, January 1985

  • Popov, O. A.; Godyak, V. A.
  • Journal of Applied Physics, Vol. 57, Issue 1
  • DOI: 10.1063/1.335395

Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas
journal, December 2006

  • Gans, T.; Schulze, J.; O’Connell, D.
  • Applied Physics Letters, Vol. 89, Issue 26
  • DOI: 10.1063/1.2425044

Validation and benchmarking of two particle-in-cell codes for a glow discharge
journal, November 2016

  • Carlsson, Johan; Khrabrov, Alexander; Kaganovich, Igor
  • Plasma Sources Science and Technology, Vol. 26, Issue 1
  • DOI: 10.1088/0963-0252/26/1/014003

Reactor modeling of magnetically enhanced capacitive RF discharge
journal, June 1997

  • Jong-Chul Park,
  • IEEE Transactions on Plasma Science, Vol. 25, Issue 3
  • DOI: 10.1109/27.597265

The elastic scattering of electrons from inert gases. I. Helium
journal, January 1981

  • Fon, W. C.; Berrington, K. A.; Hibbert, A.
  • Journal of Physics B: Atomic and Molecular Physics, Vol. 14, Issue 2
  • DOI: 10.1088/0022-3700/14/2/014

Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization
journal, September 1965

  • Rapp, Donald; Englander‐Golden, Paula
  • The Journal of Chemical Physics, Vol. 43, Issue 5
  • DOI: 10.1063/1.1696957

Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices
journal, February 2004

  • Boyle, P. C.; Ellingboe, A. R.; Turner, M. M.
  • Journal of Physics D: Applied Physics, Vol. 37, Issue 5
  • DOI: 10.1088/0022-3727/37/5/008

Instability, collapse, and oscillation of sheaths caused by secondary electron emission
journal, December 2012

  • Campanell, M. D.; Khrabrov, A. V.; Kaganovich, I. D.
  • Physics of Plasmas, Vol. 19, Issue 12
  • DOI: 10.1063/1.4773195

Mathematical simulation of a low-pressure capacitive RF discharge in an external radial magnetic field using the KARAT code
journal, November 2016


Ion energy uniformity in high-frequency capacitive discharges
journal, January 2005

  • Perret, A.; Chabert, P.; Jolly, J.
  • Applied Physics Letters, Vol. 86, Issue 2
  • DOI: 10.1063/1.1848183

Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 MHz
journal, August 1990


Magnetical asymmetry effect in capacitively coupled plasmas: effects of the magnetic field gradient, pressure, and gap length
journal, March 2018

  • Yang, Shali; Chang, Lijie; Zhang, Ya
  • Plasma Sources Science and Technology, Vol. 27, Issue 3
  • DOI: 10.1088/1361-6595/aab47e

On the efficiency of the electron sheath heating in capacitively coupled radio frequency discharges in the weakly collisional regime
journal, July 1995

  • Buddemeier, U.; Kortshagen, U.; Pukropski, I.
  • Applied Physics Letters, Vol. 67, Issue 2
  • DOI: 10.1063/1.114663

Tailored-waveform excitation of capacitively coupled plasmas and the electrical asymmetry effect
journal, November 2015


Kinetic Theory of Plasma Sheaths Surrounding Electron-Emitting Surfaces
journal, August 2013


The application of scattering cross sections to ion flux models in discharge sheaths
journal, July 1994

  • Phelps, A. V.
  • Journal of Applied Physics, Vol. 76, Issue 2
  • DOI: 10.1063/1.357820

Ion flux nonuniformities in large-area high-frequency capacitive discharges
journal, July 2003

  • Perret, A.; Chabert, P.; Booth, J. -P.
  • Applied Physics Letters, Vol. 83, Issue 2
  • DOI: 10.1063/1.1592617

Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge
journal, December 2008

  • Xu, Lin; Chen, Lee; Funk, Merritt
  • Applied Physics Letters, Vol. 93, Issue 26
  • DOI: 10.1063/1.3062853

Ion energy distribution functions behind the sheaths of magnetized and non-magnetized radio frequency discharges
journal, February 2013

  • Trieschmann, Jan; Shihab, Mohammed; Szeremley, Daniel
  • Journal of Physics D: Applied Physics, Vol. 46, Issue 8
  • DOI: 10.1088/0022-3727/46/8/084016

Elastic electron scattering from helium: absolute experimental cross sections, theory and derived interaction potentials
journal, April 1992

  • Brunger, M. J.; Buckman, S. J.; Allen, L. J.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 25, Issue 8
  • DOI: 10.1088/0953-4075/25/8/016

Space and phase resolved plasma parameters in an industrial dual-frequency capacitively coupled radio-frequency discharge
journal, November 2007


Observation of transient electric fields in particle-in-cell simulation of capacitively coupled discharges
journal, July 2014

  • Sharma, S.; Mishra, S. K.; Kaw, Predhiman K.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4890957

Tailored ion energy distributions on plasma electrodes
journal, September 2013

  • Economou, Demetre J.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 31, Issue 5
  • DOI: 10.1116/1.4819315