DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured Nanocrystals

Abstract

Generating multiple excitons by a single high-energy photon is a promising third-generation solar energy conversion strategy. We demonstrate that multiple exciton generation (MEG) in PbSICdS Janus-like heteronanostructures is enhanced over that of single-component and core/shell nanocrystal architectures, with an onset close to two times the PbS band gap. We attribute the enhanced MEG to the asymmetric nature of the heteronanostructure that results in an increase in the effective Coulomb interaction that drives MEG and a reduction of the competing hot exciton cooling rate. Slowed cooling occurs through effective trapping of hot-holes by a manifold of valence band interfacial states having both PbS and CdS character, as evidenced by photoluminescence studies and ab initio calculations. Using transient photocurrent spectroscopy, we find that the MEG characteristics of the individual nanostructures are maintained in conductive arrays and demonstrate that these quasi-spherical PbSICdS nanocrystals can be incorporated as the main absorber layer in functional solid-state solar cell architectures. Finally, based upon our analysis, we provide design rules for the next generation of engineered nanocrystals to further improve the MEG characteristics.

Authors:
 [1];  [2]; ORCiD logo [3]; ORCiD logo [4];  [2];  [1]; ORCiD logo [1]; ORCiD logo [2];  [5]; ORCiD logo [5];  [3]; ORCiD logo [2]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Univ. of Chicago, IL (United States)
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP); National Renewable Energy Lab. (NREL), Golden, CO (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1471985
Alternate Identifier(s):
OSTI ID: 1489380
Report Number(s):
NREL/JA-5900-71834
Journal ID: ISSN 1936-0851
Grant/Contract Number:  
AC36-08GO28308; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 12; Journal Issue: 10; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; quantum dots; multiple exciton generation; solar energy conversion; nanocrystal; solar cell; carrier multiplication; multiple excition generation; quantum dot; transient absorption spectroscopy

Citation Formats

Kroupa, Daniel M., Pach, Gregory F., Vörös, Márton, Giberti, Federico, Chernomordik, Boris D., Crisp, Ryan W., Nozik, Arthur J., Johnson, Justin C., Singh, Rohan, Klimov, Victor I., Galli, Giulia, and Beard, Matthew C. Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured Nanocrystals. United States: N. p., 2018. Web. doi:10.1021/acsnano.8b04850.
Kroupa, Daniel M., Pach, Gregory F., Vörös, Márton, Giberti, Federico, Chernomordik, Boris D., Crisp, Ryan W., Nozik, Arthur J., Johnson, Justin C., Singh, Rohan, Klimov, Victor I., Galli, Giulia, & Beard, Matthew C. Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured Nanocrystals. United States. https://doi.org/10.1021/acsnano.8b04850
Kroupa, Daniel M., Pach, Gregory F., Vörös, Márton, Giberti, Federico, Chernomordik, Boris D., Crisp, Ryan W., Nozik, Arthur J., Johnson, Justin C., Singh, Rohan, Klimov, Victor I., Galli, Giulia, and Beard, Matthew C. Fri . "Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured Nanocrystals". United States. https://doi.org/10.1021/acsnano.8b04850. https://www.osti.gov/servlets/purl/1471985.
@article{osti_1471985,
title = {Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured Nanocrystals},
author = {Kroupa, Daniel M. and Pach, Gregory F. and Vörös, Márton and Giberti, Federico and Chernomordik, Boris D. and Crisp, Ryan W. and Nozik, Arthur J. and Johnson, Justin C. and Singh, Rohan and Klimov, Victor I. and Galli, Giulia and Beard, Matthew C.},
abstractNote = {Generating multiple excitons by a single high-energy photon is a promising third-generation solar energy conversion strategy. We demonstrate that multiple exciton generation (MEG) in PbSICdS Janus-like heteronanostructures is enhanced over that of single-component and core/shell nanocrystal architectures, with an onset close to two times the PbS band gap. We attribute the enhanced MEG to the asymmetric nature of the heteronanostructure that results in an increase in the effective Coulomb interaction that drives MEG and a reduction of the competing hot exciton cooling rate. Slowed cooling occurs through effective trapping of hot-holes by a manifold of valence band interfacial states having both PbS and CdS character, as evidenced by photoluminescence studies and ab initio calculations. Using transient photocurrent spectroscopy, we find that the MEG characteristics of the individual nanostructures are maintained in conductive arrays and demonstrate that these quasi-spherical PbSICdS nanocrystals can be incorporated as the main absorber layer in functional solid-state solar cell architectures. Finally, based upon our analysis, we provide design rules for the next generation of engineered nanocrystals to further improve the MEG characteristics.},
doi = {10.1021/acsnano.8b04850},
journal = {ACS Nano},
number = 10,
volume = 12,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantum dot solar cells
journal, April 2002


Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells
journal, November 2010

  • Nozik, A. J.; Beard, M. C.; Luther, J. M.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr900289f

The promise and challenge of nanostructured solar cells
journal, December 2014

  • Beard, Matthew C.; Luther, Joseph M.; Nozik, Arthur J.
  • Nature Nanotechnology, Vol. 9, Issue 12
  • DOI: 10.1038/nnano.2014.292

High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion
journal, May 2004


Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell
journal, December 2011


Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%
journal, September 2015

  • Davis, Nathaniel J. L. K.; Böhm, Marcus L.; Tabachnyk, Maxim
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9259

Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%
journal, November 2015


Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%
journal, April 2017


Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation
journal, June 2009


Multiple Exciton Collection in a Sensitized Photovoltaic System
journal, September 2010


Photoexcitation cascade and multiple hot-carrier generation in graphene
journal, February 2013

  • Tielrooij, K. J.; Song, J. C. W.; Jensen, S. A.
  • Nature Physics, Vol. 9, Issue 4
  • DOI: 10.1038/nphys2564

Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes
journal, September 2009


Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals
journal, December 2005

  • Schaller, Richard D.; Petruska, Melissa A.; Klimov, Victor I.
  • Applied Physics Letters, Vol. 87, Issue 25
  • DOI: 10.1063/1.2142092

High-Efficiency Carrier Multiplication and Ultrafast Charge Separation in Semiconductor Nanocrystals Studied via Time-Resolved Photoluminescence
journal, December 2006

  • Schaller, Richard D.; Sykora, Milan; Jeong, Sohee
  • The Journal of Physical Chemistry B, Vol. 110, Issue 50
  • DOI: 10.1021/jp065282p

Carrier Multiplication in CdTe Quantum Dots by Single-photon Timing Spectroscopy
journal, August 2009

  • Kobayashi, Yoichi; Udagawa, Takeshi; Tamai, Naoto
  • Chemistry Letters, Vol. 38, Issue 8
  • DOI: 10.1246/cl.2009.830

Carrier Multiplication and Its Reduction by Photodoping in Colloidal InAs Quantum Dots
journal, February 2007

  • Pijpers, J. J. H.; Hendry, E.; Milder, M. T. W.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 11
  • DOI: 10.1021/jp066709v

Efficient carrier multiplication in InP nanoparticles
journal, February 2010

  • Stubbs, Stuart K.; Hardman, Samantha J. O.; Graham, Darren M.
  • Physical Review B, Vol. 81, Issue 8
  • DOI: 10.1103/PhysRevB.81.081303

Multiple Exciton Generation in Colloidal Silicon Nanocrystals
journal, August 2007

  • Beard, Matthew C.; Knutsen, Kelly P.; Yu, Pingrong
  • Nano Letters, Vol. 7, Issue 8
  • DOI: 10.1021/nl071486l

Carrier multiplication in germanium nanocrystals
journal, February 2015

  • Saeed, Saba; de Weerd, Chris; Stallinga, Peter
  • Light: Science & Applications, Vol. 4, Issue 2
  • DOI: 10.1038/lsa.2015.24

Aspect Ratio Dependence of Auger Recombination and Carrier Multiplication in PbSe Nanorods
journal, February 2013

  • Padilha, Lazaro A.; Stewart, John T.; Sandberg, Richard L.
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl304426y

Highly efficient carrier multiplication in PbS nanosheets
journal, April 2014

  • Aerts, Michiel; Bielewicz, Thomas; Klinke, Christian
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4789

Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals
journal, December 2017


Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots
journal, May 2005

  • Ellingson, Randy J.; Beard, Matthew C.; Johnson, Justin C.
  • Nano Letters, Vol. 5, Issue 5, p. 865-871
  • DOI: 10.1021/nl0502672

Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence
journal, September 2008


In Spite of Recent Doubts Carrier Multiplication Does Occur in PbSe Nanocrystals
journal, June 2008

  • Trinh, M. Tuan; Houtepen, Arjan J.; Schins, Juleon M.
  • Nano Letters, Vol. 8, Issue 6
  • DOI: 10.1021/nl0807225

Efficient Multiple Exciton Generation Observed in Colloidal PbSe Quantum Dots with Temporally and Spectrally Resolved Intraband Excitation
journal, March 2009

  • Ji, Minbiao; Park, Sungnam; Connor, Stephen T.
  • Nano Letters, Vol. 9, Issue 3
  • DOI: 10.1021/nl900103f

Comparison of Carrier Multiplication Yields in PbS and PbSe Nanocrystals: The Role of Competing Energy-Loss Processes
journal, January 2012

  • Stewart, John T.; Padilha, Lazaro A.; Qazilbash, M. Mumtaz
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203367m

PbTe Colloidal Nanocrystals:  Synthesis, Characterization, and Multiple Exciton Generation
journal, March 2006

  • Murphy, James E.; Beard, Matthew C.; Norman, Andrew G.
  • Journal of the American Chemical Society, Vol. 128, Issue 10
  • DOI: 10.1021/ja0574973

Size and Composition Dependent Multiple Exciton Generation Efficiency in PbS, PbSe, and PbS x Se 1– x Alloyed Quantum Dots
journal, June 2013

  • Midgett, Aaron G.; Luther, Joseph M.; Stewart, John T.
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl4009748

Variations in the Quantum Efficiency of Multiple Exciton Generation for a Series of Chemically Treated PbSe Nanocrystal Films
journal, February 2009

  • Beard, Matthew C.; Midgett, Aaron G.; Law, Matt
  • Nano Letters, Vol. 9, Issue 2
  • DOI: 10.1021/nl803600v

Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots
journal, June 2007

  • Luther, Joseph M.; Beard, Matthew C.; Song, Qing
  • Nano Letters, Vol. 7, Issue 6
  • DOI: 10.1021/nl0708617

Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots
journal, September 2010

  • Midgett, Aaron G.; Hillhouse, Hugh W.; Hughes, Barbara K.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 41
  • DOI: 10.1021/jp1057786

Carrier Multiplication in Quantum Dots within the Framework of Two Competing Energy Relaxation Mechanisms
journal, June 2013

  • Stewart, John T.; Padilha, Lazaro A.; Bae, Wan Ki
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 12
  • DOI: 10.1021/jz4004334

Enhanced carrier multiplication in engineered quasi-type-II quantum dots
journal, June 2014

  • Cirloganu, Claudiu M.; Padilha, Lazaro A.; Lin, Qianglu
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5148

Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells
journal, June 2014

  • Neo, Darren C. J.; Cheng, Cheng; Stranks, Samuel D.
  • Chemistry of Materials, Vol. 26, Issue 13
  • DOI: 10.1021/cm501595u

Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange
journal, June 2015


Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots
journal, September 2015

  • Gao, Jianbo; Fidler, Andrew F.; Klimov, Victor I.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9185

Observation of trapped-hole diffusion on the surfaces of CdS nanorods
journal, July 2016

  • Utterback, James K.; Grennell, Amanda N.; Wilker, Molly B.
  • Nature Chemistry, Vol. 8, Issue 11
  • DOI: 10.1038/nchem.2566

Synthesis of High Aspect Ratio Quantum-Size CdS Nanorods and Their Surface-Dependent Photoluminescence
journal, August 2008

  • Saunders, Aaron E.; Ghezelbash, Ali; Sood, Preeti
  • Langmuir, Vol. 24, Issue 16
  • DOI: 10.1021/la800964s

Atomistic Model of Fluorescence Intermittency of Colloidal Quantum Dots
journal, April 2014


Colloidal Nanoparticles for Intermediate Band Solar Cells
journal, June 2015


Hot-electron transfer in quantum-dot heterojunction films
journal, June 2018

  • Grimaldi, Gianluca; Crisp, Ryan W.; ten Brinck, Stephanie
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-04623-9

Mapping Charge Distribution in Single PbS Core – CdS Arm Nano-Multipod Heterostructures by Off-Axis Electron Holography
journal, April 2017


Temperature-Dependent Optical Properties of PbS/CdS Core/Shell Quantum Dot Thin Films: Probing the Wave Function Delocalization
journal, July 2015

  • Fang, Hong-Hua; Balazs, Daniel M.; Protesescu, Loredana
  • The Journal of Physical Chemistry C, Vol. 119, Issue 30
  • DOI: 10.1021/acs.jpcc.5b05890

Optical Properties of PbS/CdS Core/Shell Quantum Dots
journal, September 2013

  • Justo, Yolanda; Geiregat, Pieter; van Hoecke, Karen
  • The Journal of Physical Chemistry C, Vol. 117, Issue 39
  • DOI: 10.1021/jp406774p

Design of Heterogeneous Chalcogenide Nanostructures with Pressure-Tunable Gaps and without Electronic Trap States
journal, March 2017


Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion
journal, October 2008


Comparing Multiple Exciton Generation in Quantum Dots To Impact Ionization in Bulk Semiconductors: Implications for Enhancement of Solar Energy Conversion
journal, August 2010

  • Beard, Matthew C.; Midgett, Aaron G.; Hanna, Mark C.
  • Nano Letters, Vol. 10, Issue 8
  • DOI: 10.1021/nl101490z

Third Generation Photovoltaics based on Multiple Exciton Generation in Quantum Confined Semiconductors
journal, October 2012

  • Beard, Matthew C.; Luther, Joseph M.; Semonin, Octavi E.
  • Accounts of Chemical Research, Vol. 46, Issue 6
  • DOI: 10.1021/ar3001958

Ultrafast carrier dynamics in semiconductor quantum dots
journal, January 1996


Ultrafast dynamics of inter- and intraband transitions in semiconductor nanocrystals: Implications for quantum-dot lasers
journal, July 1999


Ultrafast Charge Separation and Long-Lived Charge Separated State in Photocatalytic CdS–Pt Nanorod Heterostructures
journal, June 2012

  • Wu, Kaifeng; Zhu, Haiming; Liu, Zheng
  • Journal of the American Chemical Society, Vol. 134, Issue 25
  • DOI: 10.1021/ja303306u

The Role of Ligands in Determining the Exciton Relaxation Dynamics in Semiconductor Quantum Dots
journal, April 2014


Increasing impact ionization rates in Si nanoparticles through surface engineering: A density functional study
journal, April 2013


High-Pressure Core Structures of Si Nanoparticles for Solar Energy Conversion
journal, January 2013


A Hot Electron–Hole Pair Breaks the Symmetry of a Semiconductor Quantum Dot
journal, November 2013

  • Trinh, M. Tuan; Sfeir, Matthew Y.; Choi, Joshua J.
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403368y

Theory of highly efficient multiexciton generation in type-II nanorods
journal, October 2016

  • Eshet, Hagai; Baer, Roi; Neuhauser, Daniel
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13178

Asymmetric Optical Transitions Determine the Onset of Carrier Multiplication in Lead Chalcogenide Quantum Confined and Bulk Crystals
journal, April 2018

  • Spoor, Frank C. M.; Grimaldi, Gianluca; Delerue, Christophe
  • ACS Nano, Vol. 12, Issue 5
  • DOI: 10.1021/acsnano.8b01530

Hole Cooling Is Much Faster than Electron Cooling in PbSe Quantum Dots
journal, December 2015


Electronic Processes within Quantum Dot-Molecule Complexes
journal, August 2016


Broadband Cooling Spectra of Hot Electrons and Holes in PbSe Quantum Dots
journal, May 2017


Impulse response of photoconductors in transmission lines
journal, April 1983


Electron–hole exchange blockade and memory-less recombination in photoexcited films of colloidal quantum dots
journal, March 2017

  • Fidler, Andrew F.; Gao, Jianbo; Klimov, Victor I.
  • Nature Physics, Vol. 13, Issue 6
  • DOI: 10.1038/nphys4073

Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells
journal, April 2015

  • Crisp, Ryan W.; Kroupa, Daniel M.; Marshall, Ashley R.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09945

Works referencing / citing this record:

Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices
journal, January 2020

  • Zhang, Yaohong; Wu, Guohua; Liu, Feng
  • Chemical Society Reviews, Vol. 49, Issue 1
  • DOI: 10.1039/c9cs00560a

Tailoring the electronic properties of semiconducting nanocrystal-solids
journal, November 2019


Hot-electron dynamics in quantum dots manipulated by spin-exchange Auger interactions
journal, October 2019


Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation
journal, January 2020

  • Crisp, Ryan W.; Hashemi, Fatemeh S. M.; Alkemade, Jordi
  • Advanced Materials Interfaces, Vol. 7, Issue 4
  • DOI: 10.1002/admi.201901600

Colloidal metal halide perovskite nanocrystals: a promising juggernaut in photovoltaic applications
journal, January 2019


Theoretical limits of multiple exciton generation and singlet fission tandem devices for solar water splitting
journal, September 2019

  • Martinez, Marissa S.; Nozik, Arthur J.; Beard, Matthew C.
  • The Journal of Chemical Physics, Vol. 151, Issue 11
  • DOI: 10.1063/1.5102095

Wearable sensors based on colloidal nanocrystals
journal, April 2019


Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation
text, January 2020