DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Large-scale exact diagonalizations reveal low-momentum scales of nuclei

Abstract

Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. In this paper, we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding $${10}^{10}$$ on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for $$^{6}\mathrm{Li}$$ in model spaces up to $${N}_{\mathrm{max}}=22$$ and to reveal the $$^{4}\mathrm{He}$$+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Finally, using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.

Authors:
 [1];  [1];  [1];  [1];  [2];  [2];  [2]
  1. Chalmers Univ. of Technology, Göteborg (Sweden). Dept. of Physics
  2. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Physics Division
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Chalmers Univ. of Technology, Göteborg (Sweden)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP); Swedish Foundation for International Cooperation in Research and Higher Education (STINT)
OSTI Identifier:
1471876
Alternate Identifier(s):
OSTI ID: 1430150
Grant/Contract Number:  
AC05-00OR22725; FG02-96ER40963; SC0008499; SC0018223; IG2012-5158
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review C
Additional Journal Information:
Journal Volume: 97; Journal Issue: 3; Journal ID: ISSN 2469-9985
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; few-body systems; nuclear many-body theory; nuclear structure & decays; ab initio calculations

Citation Formats

Forssén, C., Carlsson, B. D., Johansson, H. T., Sääf, D., Bansal, A., Hagen, G., and Papenbrock, T. Large-scale exact diagonalizations reveal low-momentum scales of nuclei. United States: N. p., 2018. Web. doi:10.1103/PhysRevC.97.034328.
Forssén, C., Carlsson, B. D., Johansson, H. T., Sääf, D., Bansal, A., Hagen, G., & Papenbrock, T. Large-scale exact diagonalizations reveal low-momentum scales of nuclei. United States. https://doi.org/10.1103/PhysRevC.97.034328
Forssén, C., Carlsson, B. D., Johansson, H. T., Sääf, D., Bansal, A., Hagen, G., and Papenbrock, T. Wed . "Large-scale exact diagonalizations reveal low-momentum scales of nuclei". United States. https://doi.org/10.1103/PhysRevC.97.034328. https://www.osti.gov/servlets/purl/1471876.
@article{osti_1471876,
title = {Large-scale exact diagonalizations reveal low-momentum scales of nuclei},
author = {Forssén, C. and Carlsson, B. D. and Johansson, H. T. and Sääf, D. and Bansal, A. and Hagen, G. and Papenbrock, T.},
abstractNote = {Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. In this paper, we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding ${10}^{10}$ on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for $^{6}\mathrm{Li}$ in model spaces up to ${N}_{\mathrm{max}}=22$ and to reveal the $^{4}\mathrm{He}$+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Finally, using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.},
doi = {10.1103/PhysRevC.97.034328},
journal = {Physical Review C},
number = 3,
volume = 97,
place = {United States},
year = {Wed Mar 28 00:00:00 EDT 2018},
month = {Wed Mar 28 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantum Monte Carlo calculations of nuclei with A <~ 7
journal, October 1997


The Theory of Three-Nucleon Systems
journal, December 1974


Volume dependence of the energy spectrum in massive quantum field theories: I. Stable particle states
journal, June 1986

  • Lüscher, M.
  • Communications in Mathematical Physics, Vol. 104, Issue 2
  • DOI: 10.1007/BF01211589

Benchmark calculations for H 3 , He 4 , O 16 , and Ca 40 with ab initio coupled-cluster theory
journal, October 2007


Non-relativistic bound states in a finite volume
journal, June 2012


Ab initio no core shell model
journal, March 2013

  • Barrett, Bruce R.; Navrátil, Petr; Vary, James P.
  • Progress in Particle and Nuclear Physics, Vol. 69
  • DOI: 10.1016/j.ppnp.2012.10.003

Improving upon CCSD(T): ΛCCSD(T). I. Potential energy surfaces
journal, January 2008

  • Taube, Andrew G.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 128, Issue 4
  • DOI: 10.1063/1.2830236

Evolving nuclear many-body forces with the similarity renormalization group
journal, March 2011


Convergence in the no-core shell model with low-momentum two-nucleon interactions
journal, March 2008


Living on the edge of stability, the limits of the nuclear landscape
journal, January 2013


No-core shell model in an effective-field-theory framework
journal, September 2007


Status of the Nuclear Shell Model
journal, December 1988


Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order
journal, May 2013


Systematic expansion for infrared oscillator basis extrapolations
journal, April 2014


Nuclear Charge Radii of Li 9 , 11 : The Influence of Halo Neutrons
journal, January 2006


Asymptotic normalization parameter of the triton
journal, March 1979


Ab initio coupled-cluster approach to nuclear structure with modern nucleon-nucleon interactions
journal, September 2010


Infrared length scale and extrapolations for the no-core shell model
journal, June 2015


New-generation Monte Carlo shell model for the K computer era
journal, January 2012

  • Shimizu, Noritaka; Abe, Takashi; Tsunoda, Yusuke
  • Progress of Theoretical and Experimental Physics, Vol. 2012, Issue 1
  • DOI: 10.1093/ptep/pts012

Universal properties of infrared oscillator basis extrapolations
journal, April 2013


Ab initio no-core solutions for 6 Li
journal, May 2017

  • Shin, Ik Jae; Kim, Youngman; Maris, Pieter
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 44, Issue 7
  • DOI: 10.1088/1361-6471/aa6cb7

The In-Medium Similarity Renormalization Group: A novel ab initio method for nuclei
journal, March 2016


Chaotic Wave Functions and Exponential Convergence of Low-Lying Energy Eigenvalues
journal, March 1999


DIRHB—A relativistic self-consistent mean-field framework for atomic nuclei
journal, June 2014


Coulomb-Sturmian basis for the nuclear many-body problem
journal, September 2012


Self-consistent Green's function method for nuclei and nuclear matter
journal, April 2004


Convergence properties of ab initio calculations of light nuclei in a harmonic oscillator basis
journal, November 2012


A general framework for discrete variable representation basis sets
journal, May 2002

  • Littlejohn, Robert G.; Cargo, Matthew; Carrington, Tucker
  • The Journal of Chemical Physics, Vol. 116, Issue 20
  • DOI: 10.1063/1.1473811

Many-fermion theory in expS- (or coupled cluster) form
journal, February 1978


Recent developments in no-core shell-model calculations
journal, May 2009

  • Navrátil, Petr; Quaglioni, Sofia; Stetcu, Ionel
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 36, Issue 8
  • DOI: 10.1088/0954-3899/36/8/083101

Corrections to nuclear energies and radii in finite oscillator spaces
journal, September 2012


Infrared extrapolations for atomic nuclei
journal, February 2015

  • Furnstahl, R. J.; Hagen, G.; Papenbrock, T.
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 42, Issue 3
  • DOI: 10.1088/0954-3899/42/3/034032

Corrections to nucleon capture cross sections computed in truncated Hilbert spaces
journal, March 2017


Factorization in large-scale many-body calculations
journal, December 2013

  • Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.
  • Computer Physics Communications, Vol. 184, Issue 12
  • DOI: 10.1016/j.cpc.2013.07.022

Ab initio no-core full configuration calculations of light nuclei
journal, January 2009


Solution of the Skyrme–Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.
journal, January 2012

  • Schunck, N.; Dobaczewski, J.; McDonnell, J.
  • Computer Physics Communications, Vol. 183, Issue 1
  • DOI: 10.1016/j.cpc.2011.08.013

Coupled-cluster computations of atomic nuclei
journal, September 2014


The shell model as a unified view of nuclear structure
journal, June 2005


Volume dependence of N -body bound states
journal, April 2018


Converging sequences in the ab initio no-core shell model
journal, February 2008


Ultraviolet extrapolations in finite oscillator bases
journal, December 2014


Infrared extrapolations of quadrupole moments and transitions
journal, April 2016


Electron-scattering form factors for Li 6 in the ab initio symmetry-guided framework
journal, February 2015


Extrapolation method for the no-core shell model
journal, March 2004


Nuclear structure with accurate chiral perturbation theory nucleon-nucleon potential: Application to Li6 and B10
journal, January 2004


Full 0ħω shell model calculation of the binding energies of the 1 f 7 / 2 nuclei
journal, April 1999


Works referencing / citing this record:

Deep learning: Extrapolation tool for ab initio nuclear theory
journal, May 2019


Simulations of Subatomic Many-Body Physics on a Quantum Frequency Processor
text, January 2018


Deep learning: Extrapolation tool for ab initio nuclear theory
text, January 2018