skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes

Abstract

We compare two experimental approaches for measuring the cation transference number in mixtures of polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt: the well-established current-interrupt method proposed by Ma et al. [J. Electrochem. Soc., 142, 1859 (1995)], and a more recent method based on measuring the steady-state current proposed by Balsara and Newman [J. Electrochem. Soc., 162, A2720 (2015)]. In electrolytes comprised of high molecular weight PEO, the data from the two techniques agree, highlighting the equivalence of these two approaches. However, in lower molecular weight PEO electrolytes the values of the two approaches diverge at low salt concentrations. We posit this is because the approach of Ma et al. requires measurements that are sensitive to the nature of the interface between the electrolyte and the electrode. The transference numbers measured by the approach of Balsara and Newman for both low and high molecular weight samples vary from 0.7 to -0.8 and are within experimental error throughout the entire salt concentration window.

Authors:
; ; ; ORCiD logo
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1471808
Alternate Identifier(s):
OSTI ID: 1605215
Grant/Contract Number:  
AC02-05CH11231; AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 165 Journal Issue: 13; Journal ID: ISSN 0013-4651
Publisher:
IOP Publishing - The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Pesko, Danielle M., Sawhney, Simar, Newman, John, and Balsara, Nitash P. Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes. United States: N. p., 2018. Web. doi:10.1149/2.0231813jes.
Pesko, Danielle M., Sawhney, Simar, Newman, John, & Balsara, Nitash P. Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes. United States. doi:10.1149/2.0231813jes.
Pesko, Danielle M., Sawhney, Simar, Newman, John, and Balsara, Nitash P. Fri . "Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes". United States. doi:10.1149/2.0231813jes.
@article{osti_1471808,
title = {Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes},
author = {Pesko, Danielle M. and Sawhney, Simar and Newman, John and Balsara, Nitash P.},
abstractNote = {We compare two experimental approaches for measuring the cation transference number in mixtures of polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt: the well-established current-interrupt method proposed by Ma et al. [J. Electrochem. Soc., 142, 1859 (1995)], and a more recent method based on measuring the steady-state current proposed by Balsara and Newman [J. Electrochem. Soc., 162, A2720 (2015)]. In electrolytes comprised of high molecular weight PEO, the data from the two techniques agree, highlighting the equivalence of these two approaches. However, in lower molecular weight PEO electrolytes the values of the two approaches diverge at low salt concentrations. We posit this is because the approach of Ma et al. requires measurements that are sensitive to the nature of the interface between the electrolyte and the electrode. The transference numbers measured by the approach of Balsara and Newman for both low and high molecular weight samples vary from 0.7 to -0.8 and are within experimental error throughout the entire salt concentration window.},
doi = {10.1149/2.0231813jes},
journal = {Journal of the Electrochemical Society},
number = 13,
volume = 165,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1149/2.0231813jes

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Transport Property and Raman Spectroscopic Studies of the Polymer Electrolyte System P(EO)[sub n]-NaTFSI
journal, January 1998

  • Ferry, Anders
  • Journal of The Electrochemical Society, Vol. 145, Issue 5
  • DOI: 10.1149/1.1838522

Polymer solid electrolytes - an overview
journal, December 1983


The Measurement of a Complete Set of Transport Properties for a Concentrated Solid Polymer Electrolyte Solution
journal, January 1995

  • Ma, Yanping
  • Journal of The Electrochemical Society, Vol. 142, Issue 6
  • DOI: 10.1149/1.2044206

Universal Relationship between Conductivity and Solvation-Site Connectivity in Ether-Based Polymer Electrolytes
journal, July 2016


IONIC CONDUCTIVITY AND LITHIUM TRANSFERENCE NUMBER OF POLY(ETHYLENE OXIDE):LiTFSI SYSTEM
journal, February 2017


Determination of Transport Properties for Solid Electrolytes from the Impedance of Thin Layer Cells
journal, January 1989

  • Pollard, Richard
  • Journal of The Electrochemical Society, Vol. 136, Issue 12
  • DOI: 10.1149/1.2096540

Relationship between Conductivity, Ion Diffusion, and Transference Number in Perfluoropolyether Electrolytes
journal, April 2016


Analysis of Transference Number Measurements Based on the Potentiostatic Polarization of Solid Polymer Electrolytes
journal, January 1995

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 142, Issue 10
  • DOI: 10.1149/1.2050005

Salt Diffusion Coefficients in Block Copolymer Electrolytes
journal, January 2011

  • Mullin, Scott A.; Stone, Gregory M.; Panday, Ashoutosh
  • Journal of The Electrochemical Society, Vol. 158, Issue 6
  • DOI: 10.1149/1.3563802

Transport Properties of LiPF[sub 6]-Based Li-Ion Battery Electrolytes
journal, January 2005

  • Valo̸en, Lars Ole; Reimers, Jan N.
  • Journal of The Electrochemical Society, Vol. 152, Issue 5
  • DOI: 10.1149/1.1872737

Relationship between Steady-State Current in Symmetric Cells and Transference Number of Electrolytes Comprising Univalent and Multivalent Ions
journal, January 2015

  • Balsara, Nitash P.; Newman, John
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0651514jes

Ueber die Allotropie des Selens
journal, January 1851


Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study
journal, April 2011


Polymer Electrolytes for Lithium-Ion Batteries
journal, April 1998


Transport Properties of a High Molecular Weight Poly(propylene oxide)-LiCF[sub 3]SO[sub 3] System
journal, June 1999

  • Doeff, Marca M.
  • Journal of The Electrochemical Society, Vol. 146, Issue 6
  • DOI: 10.1149/1.1391885

Optimizing Ion Transport in Polyether-Based Electrolytes for Lithium Batteries
journal, April 2018


Poly(ethylene oxide) electrolytes for operation at near room temperature
journal, January 1985


Electrochemical measurement of transference numbers in polymer electrolytes
journal, December 1987


Polymer Electrolytes: The Key to Lithium Polymer Batteries
journal, March 2000


A Differential Moving Boundary Method for Transference Numbers
journal, September 1943

  • Longsworth, L. G.
  • Journal of the American Chemical Society, Vol. 65, Issue 9
  • DOI: 10.1021/ja01249a027

7Li and 19F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries
journal, September 1999


Transport property measurements of polymer electrolytes
journal, April 1998


Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes
journal, December 1994

  • Lascaud, S.; Perrier, M.; Vallee, A.
  • Macromolecules, Vol. 27, Issue 25
  • DOI: 10.1021/ma00103a034

Electromotive Force of the Cell with Transference and Theory of Interdiffusion of Electrolytes
journal, October 1927


Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes
journal, June 2016


Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations
journal, February 2006

  • Borodin, Oleg; Smith, Grant D.
  • Macromolecules, Vol. 39, Issue 4
  • DOI: 10.1021/ma052277v

Transport Properties of the Solid Polymer Electrolyte System P(EO) n LiTFSI
journal, April 2000

  • Edman, Ludvig; Doeff, Marca M.; Ferry, Anders
  • The Journal of Physical Chemistry B, Vol. 104, Issue 15
  • DOI: 10.1021/jp993897z

Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes
journal, July 2015


Steady state current flow in solid binary electrolyte cells
journal, June 1987

  • Bruce, Peter G.; Vincent, Colin A.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 225, Issue 1-2
  • DOI: 10.1016/0022-0728(87)80001-3

Negative Transference Numbers in Poly(ethylene oxide)-Based Electrolytes
journal, January 2017

  • Pesko, Danielle M.; Timachova, Ksenia; Bhattacharya, Rajashree
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0581711jes

Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups
journal, October 2012


Conductivity, charge transfer and transport number—an ac-investigation of the polymer electrolyte LiSCN-poly(ethyleneoxide)
journal, December 1982


Negative Stefan-Maxwell Diffusion Coefficients and Complete Electrochemical Transport Characterization of Homopolymer and Block Copolymer Electrolytes
journal, January 2018

  • Villaluenga, Irune; Pesko, Danielle M.; Timachova, Ksenia
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0641811jes

Infrared and Raman study of the PEO-LiTFSI polymer electrolyte
journal, April 1998


Electrophoretic NMR
journal, January 1994


Über Gemischte elektrische Leitung in einheitlichen festen Verbindungen
journal, February 1927

  • Tubandt, C.; Reinhold, Hermann
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 160, Issue 1
  • DOI: 10.1002/zaac.19271600122

Ion Association and Ion Solvation Effects at the Crystalline−Amorphous Phase Transition in PEO−LiTFSI
journal, August 2000

  • Edman, Ludvig
  • The Journal of Physical Chemistry B, Vol. 104, Issue 31
  • DOI: 10.1021/jp000082d

Effect of molecular weight on conductivity of polymer electrolytes
journal, November 2011

  • Teran, Alexander A.; Tang, Maureen H.; Mullin, Scott A.
  • Solid State Ionics, Vol. 203, Issue 1
  • DOI: 10.1016/j.ssi.2011.09.021

    Works referencing / citing this record:

    Ohm’s law for ion conduction in lithium and beyond-lithium battery electrolytes
    journal, July 2019

    • Galluzzo, Michael D.; Maslyn, Jacqueline A.; Shah, Deep B.
    • The Journal of Chemical Physics, Vol. 151, Issue 2
    • DOI: 10.1063/1.5109684

    Comparing Experimental Measurements of Limiting Current in Polymer Electrolytes with Theoretical Predictions
    journal, January 2019

    • Gribble, Daniel A.; Frenck, Louise; Shah, Deep B.
    • Journal of The Electrochemical Society, Vol. 166, Issue 14
    • DOI: 10.1149/2.0391914jes

    Lithium Transference Numbers in PEO/LiTFSA Electrolytes Determined by Electrophoretic NMR
    journal, January 2019

    • Rosenwinkel, Mark P.; Schönhoff, Monika
    • Journal of The Electrochemical Society, Vol. 166, Issue 10
    • DOI: 10.1149/2.0831910jes