skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide

Abstract

Sodium-ion batteries are attractive for large-scale energy storage due to the abundance of sodium, but the deficient capacity achieved by cathode materials prevents their further applications. Chemical substitution of Na in transition metal layers is a promising solution to utilize both the cationic and anionic redox activities for boosting energy storage. Unfortunately, different from the classic Li-rich Li2MnO3, a pure prototype with anionic redox activity has not been found among the typical Na-rich cathodes. In this paper, we originally design a Na-rich layered oxide prototype, namely Na3RuO4 (Ru5+), which delivers a partial reversible capacity solely via the participation of oxygen anions. More importantly, the anionic redox activity is validated by the in situ Raman observation of reversible peroxo-based O–O (de)bonding upon cycling. Finally, our findings not only highlight the multiple electron-transfer strategy for capacity extension, but also broaden the horizon in designing Na-rich electrode materials for high-energy sodium-ion batteries.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [1];  [2];  [5]; ORCiD logo [4]; ORCiD logo [6]
  1. National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Inst.; Univ. of Tsukuba (Japan). Graduate School of System and Information Engineering
  2. Nanjing Univ. (China). Center of Energy Storage Materials & Technology. College of Engineering and Applied Sciences. National Lab. of Solid State Microstructures. Collaborative Innovation Center of Advanced Microstructures
  3. National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Inst.
  4. Shanghai Jiao Tong Univ. (China). State Key Lab. of Metal Matrix Composites. School of Material Science and Engineering
  5. Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division
  6. Nanjing Univ. (China). Center of Energy Storage Materials & Technology. College of Engineering and Applied Sciences. National Lab. of Solid State Microstructures. Collaborative Innovation Center of Advanced Microstructures; National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Inst.; Univ. of Tsukuba (Japan). Graduate School of System and Information Engineering
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Nanjing Univ. (China); Shanghai Jiao Tong Univ. (China)
Sponsoring Org.:
USDOE Office of Science (SC); Japan Science and Technology Agency (JST); National Basic Research Program of China; National Natural Science Foundation of China (NNSFC); Natural Science Foundation of Jiangsu Province (China); China Scholarship Council (CSC)
OSTI Identifier:
1471523
Grant/Contract Number:  
AC02-06CH11357; 2014CB932300; 21373111; 21633003; 51602144; BK20170630
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 11; Journal Issue: 2; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Qiao, Yu, Guo, Shaohua, Zhu, Kai, Liu, Pan, Li, Xiang, Jiang, Kezhu, Sun, Cheng-Jun, Chen, Mingwei, and Zhou, Haoshen. Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide. United States: N. p., 2018. Web. https://doi.org/10.1039/C7EE03554C.
Qiao, Yu, Guo, Shaohua, Zhu, Kai, Liu, Pan, Li, Xiang, Jiang, Kezhu, Sun, Cheng-Jun, Chen, Mingwei, & Zhou, Haoshen. Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide. United States. https://doi.org/10.1039/C7EE03554C
Qiao, Yu, Guo, Shaohua, Zhu, Kai, Liu, Pan, Li, Xiang, Jiang, Kezhu, Sun, Cheng-Jun, Chen, Mingwei, and Zhou, Haoshen. Fri . "Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide". United States. https://doi.org/10.1039/C7EE03554C. https://www.osti.gov/servlets/purl/1471523.
@article{osti_1471523,
title = {Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide},
author = {Qiao, Yu and Guo, Shaohua and Zhu, Kai and Liu, Pan and Li, Xiang and Jiang, Kezhu and Sun, Cheng-Jun and Chen, Mingwei and Zhou, Haoshen},
abstractNote = {Sodium-ion batteries are attractive for large-scale energy storage due to the abundance of sodium, but the deficient capacity achieved by cathode materials prevents their further applications. Chemical substitution of Na in transition metal layers is a promising solution to utilize both the cationic and anionic redox activities for boosting energy storage. Unfortunately, different from the classic Li-rich Li2MnO3, a pure prototype with anionic redox activity has not been found among the typical Na-rich cathodes. In this paper, we originally design a Na-rich layered oxide prototype, namely Na3RuO4 (Ru5+), which delivers a partial reversible capacity solely via the participation of oxygen anions. More importantly, the anionic redox activity is validated by the in situ Raman observation of reversible peroxo-based O–O (de)bonding upon cycling. Finally, our findings not only highlight the multiple electron-transfer strategy for capacity extension, but also broaden the horizon in designing Na-rich electrode materials for high-energy sodium-ion batteries.},
doi = {10.1039/C7EE03554C},
journal = {Energy & Environmental Science},
number = 2,
volume = 11,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Structure of as-prepared Na3RuO4 layered Na-rich oxide: (a) XRD patterns with SEM image inset; (b) Schematic of crystal structure; (c) Scanning area electron diffraction (SAED) patterns; (d) High-angle annular dark field (HAADF) STEM images. The corresponding crystal structure is inset for clarity.

Save / Share:

Works referenced in this record:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Study of the nanosized Li2MnO3: Electrochemical behavior, structure, magnetic properties, and vibrational modes
journal, May 2013


Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3
journal, February 2017

  • Pearce, Paul E.; Perez, Arnaud J.; Rousse, Gwenaelle
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4864

Anionic Redox in Rechargeable Lithium Batteries
journal, June 2017


Understanding and Controlling Anionic Electrochemical Activity in High-Capacity Oxides for Next Generation Li-Ion Batteries
journal, January 2017


Redox Potential Paradox in Na x MO 2 for Sodium-Ion Battery Cathodes
journal, February 2016


Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges
journal, January 2015

  • Rozier, Patrick; Tarascon, Jean Marie
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0111514jes

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries
journal, March 2010

  • Baddour-Hadjean, Rita; Pereira-Ramos, Jean-Pierre
  • Chemical Reviews, Vol. 110, Issue 3
  • DOI: 10.1021/cr800344k

The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides
journal, June 2003


Improving Energy Density and Structural Stability of Manganese Oxide Cathodes for Na-Ion Batteries by Structural Lithium Substitution
journal, December 2016


Mechanistic Insight into the Superoxide Induced Ring Opening in Propylene Carbonate Based Electrolytes using in Situ Surface-Enhanced Infrared Spectroscopy
journal, March 2016

  • Vivek, J. Padmanabhan; Berry, Neil; Papageorgiou, Georgios
  • Journal of the American Chemical Society, Vol. 138, Issue 11
  • DOI: 10.1021/jacs.5b12494

A 3.8-V earth-abundant sodium battery electrode
journal, July 2014

  • Barpanda, Prabeer; Oyama, Gosuke; Nishimura, Shin-ichi
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5358

Reactions in the Rechargeable Lithium–O 2 Battery with Alkyl Carbonate Electrolytes
journal, May 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 133, Issue 20
  • DOI: 10.1021/ja2021747

Isolated spin 3/2 plaquettes in Na3RuO4
journal, June 2005


Anionic redox processes for electrochemical devices
journal, January 2016

  • Grimaud, A.; Hong, W. T.; Shao-Horn, Y.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4551

X-ray Photoemission Spectroscopy Study of Cationic and Anionic Redox Processes in High-Capacity Li-Ion Battery Layered-Oxide Electrodes
journal, January 2016

  • Foix, Dominique; Sathiya, Mariyappan; McCalla, Eric
  • The Journal of Physical Chemistry C, Vol. 120, Issue 2
  • DOI: 10.1021/acs.jpcc.5b10475

Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2
journal, August 2016

  • Luo, Kun; Roberts, Matthew R.; Guerrini, Niccoló
  • Journal of the American Chemical Society, Vol. 138, Issue 35
  • DOI: 10.1021/jacs.6b05111

Lithium Extraction Mechanism in Li-Rich Li 2 MnO 3 Involving Oxygen Hole Formation and Dimerization
journal, September 2016


The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries
journal, January 2016

  • Saubanère, M.; McCalla, E.; Tarascon, J. -M.
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE03048J

New O2/P2-type Li-Excess Layered Manganese Oxides as Promising Multi-Functional Electrode Materials for Rechargeable Li/Na Batteries
journal, May 2014

  • Yabuuchi, Naoaki; Hara, Ryo; Kajiyama, Masataka
  • Advanced Energy Materials, Vol. 4, Issue 13
  • DOI: 10.1002/aenm.201301453

Editors' Choice—Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries
journal, January 2016

  • Assat, Gaurav; Delacourt, Charles; Corte, Daniel Alves Dalla
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0531614jes

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode
journal, January 2018


Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
journal, April 2016

  • Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11397

Shell-isolated nanoparticle-enhanced Raman spectroscopy
journal, March 2010

  • Li, Jian Feng; Huang, Yi Fan; Ding, Yong
  • Nature, Vol. 464, Issue 7287, p. 392-395
  • DOI: 10.1038/nature08907

A New High-Energy Cathode for a Na-Ion Battery with Ultrahigh Stability
journal, September 2013

  • Park, Young-Uk; Seo, Dong-Hwa; Kwon, Hyung-Soon
  • Journal of the American Chemical Society, Vol. 135, Issue 37
  • DOI: 10.1021/ja406016j

Layered Na2RuO3 as a cathode material for Na-ion batteries
journal, August 2013


Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi 0.5 Mn 1.5 O 4 Electrodes
journal, November 2015

  • Qiao, Ruimin; Wray, L. Andrew; Kim, Jung-Hyun
  • The Journal of Physical Chemistry C, Vol. 119, Issue 49
  • DOI: 10.1021/acs.jpcc.5b07479

Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries
journal, January 2017

  • An, Juan; Shi, Liyi; Chen, Guorong
  • Journal of Materials Chemistry A, Vol. 5, Issue 37
  • DOI: 10.1039/C7TA05971J

Direct In situ Observation of Li 2 O Evolution on Li-Rich High-Capacity Cathode Material, Li[Ni x Li (1–2 x )/3 Mn (2– x )/3 ]O 2 (0 ≤ x ≤0.5)
journal, January 2014

  • Hy, Sunny; Felix, Felix; Rick, John
  • Journal of the American Chemical Society, Vol. 136, Issue 3
  • DOI: 10.1021/ja410137s

Anionic redox chemistry in Na-rich Na 2 Ru 1−y Sn y O 3 positive electrode material for Na-ion batteries
journal, April 2015


Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries
journal, December 2016

  • Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13814

Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li 2 MnO 3 , studied by soft X-ray absorption spectroscopy
journal, January 2016

  • Oishi, Masatsugu; Yamanaka, Keisuke; Watanabe, Iwao
  • Journal of Materials Chemistry A, Vol. 4, Issue 23
  • DOI: 10.1039/C6TA00174B

Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: x Li 2 MnO 3 ·(1 − x )LiMn 0.333 Ni 0.333 Co 0.333 O 2 (0 ≤ x ≤ 0.7)
journal, October 2008

  • Johnson, Christopher S.; Li, Naichao; Lefief, Christina
  • Chemistry of Materials, Vol. 20, Issue 19
  • DOI: 10.1021/cm801245r

Exploring reversible oxidation of oxygen in a manganese oxide
journal, January 2016

  • Du, Ke; Zhu, Jinyou; Hu, Guorong
  • Energy & Environmental Science, Vol. 9, Issue 8
  • DOI: 10.1039/C6EE01367H

High Performance Li 2 Ru 1– y Mn y O 3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding
journal, March 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemistry of Materials, Vol. 25, Issue 7
  • DOI: 10.1021/cm400193m

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

    Works referencing / citing this record:

    Exposing {010} Active Facets by Multiple-Layer Oriented Stacking Nanosheets for High-Performance Capacitive Sodium-Ion Oxide Cathode
    journal, August 2018


    Manganese‐Based Na‐Rich Materials Boost Anionic Redox in High‐Performance Layered Cathodes for Sodium‐Ion Batteries
    journal, May 2019


    A New Type of Li‐Rich Rock‐Salt Oxide Li 2 Ni 1/3 Ru 2/3 O 3 with Reversible Anionic Redox Chemistry
    journal, January 2019


    Anionic redox reaction in layered NaCr2/3Ti1/3S2 through electron holes formation and dimerization of S–S
    journal, October 2019


    Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials
    journal, July 2019


    A novel P3-type Na 2/3 Mg 1/3 Mn 2/3 O 2 as high capacity sodium-ion cathode using reversible oxygen redox
    journal, January 2019

    • Song, Bohang; Hu, Enyuan; Liu, Jue
    • Journal of Materials Chemistry A, Vol. 7, Issue 4
    • DOI: 10.1039/c8ta09422e

    Na 2 Ru 1−x Mn x O 3 as the cathode for sodium-ion batteries
    journal, January 2019

    • Li, Xiang; Guo, Shaohua; Qiu, Feilong
    • Journal of Materials Chemistry A, Vol. 7, Issue 9
    • DOI: 10.1039/c8ta11915e

    Correlation between Ru–O hybridization and the oxygen evolution reaction in ruthenate epitaxial thin films
    journal, January 2019

    • Lee, Sang A.; Lee, Jegon; Oh, Seokjae
    • Sustainable Energy & Fuels, Vol. 3, Issue 10
    • DOI: 10.1039/c9se00441f

    Simultaneously tuning cationic and anionic redox in a P2-Na 0.67 Mn 0.75 Ni 0.25 O 2 cathode material through synergic Cu/Mg co-doping
    journal, January 2019

    • Kong, Weijin; Gao, Rui; Li, Qingyuan
    • Journal of Materials Chemistry A, Vol. 7, Issue 15
    • DOI: 10.1039/c9ta00968j

    Unraveling the anionic oxygen loss and related structural evolution within O3-type Na layered oxide cathodes
    journal, January 2019

    • Jia, Min; Qiao, Yu; Li, Xiang
    • Journal of Materials Chemistry A, Vol. 7, Issue 35
    • DOI: 10.1039/c9ta06186j

    Review on anionic redox in sodium-ion batteries
    journal, January 2019

    • Xu, Hang; Guo, Shaohua; Zhou, Haoshen
    • Journal of Materials Chemistry A, Vol. 7, Issue 41
    • DOI: 10.1039/c9ta06389g

    Na 2 SeO 3 : A Na-Ion Battery Positive Electrode Material with High Capacity
    journal, November 2018

    • Su, Bizhe; Zhang, Jiaolong; Fujita, Manabu
    • Journal of The Electrochemical Society, Vol. 166, Issue 3
    • DOI: 10.1149/2.0131903jes

    Understanding Oxygen Redox in Cu-Doped P2-Na 0.67 Mn 0.8 Fe 0.1 Co 0.1 O 2 Cathode Materials for Na-Ion Batteries
    journal, January 2018

    • Li, Ling; Wang, Huibo; Han, Wenze
    • Journal of The Electrochemical Society, Vol. 165, Issue 16
    • DOI: 10.1149/2.0691816jes

    Air-Stable NaxTMO2 Cathodes for Sodium Storage
    journal, May 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.