DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Operando XAS Study of the Surface Oxidation State on a Monolayer IrOx on RuOx and Ru Oxide Based Nanoparticles for Oxygen Evolution in Acidic Media

Abstract

Here in this paper we present surface sensitive operando XAS L-edge measurements on IrOx/RuO2 thin films as well as mass-selected RuOx and Ru nanoparticles. We observed shifts of the white line XAS peak toward higher energies with applied electrochemical potential. Apart from the case of the metallic Ru nanoparticles, the observed potential dependencies were purely core-level shifts caused by a change in oxidation state, which indicates no structural changes. These findings can be explained by different binding energies of oxygenated species on the surface of IrOx and RuOx. Simulated XAS spectra show that the average Ir oxidation state change is strongly affected by the coverage of atomic O. The observed shifts in oxidation state suggest that the surface has a high coverage of O at potentials just below the potential where oxygen evolution is exergonic in free energy. In conclusion, this observation is consistent with the notion that the metal–oxygen bond is stronger than ideal.

Authors:
 [1];  [2];  [1];  [1];  [1];  [1];  [3];  [4];  [5]; ORCiD logo [1]; ORCiD logo [6]
  1. Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Physics
  2. Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Physics; Univ. of Copenhagen (Denmark). Dept. of Chemistry; Stanford Univ., CA (United States). SUNCAT Center for Interface Science and Catalysis, Dept. of Chemical Engineering
  3. Stanford Univ., CA (United States). SUNCAT Center for Interface Science and Catalysis, Dept. of Chemical Engineering
  4. Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Physics; Imperial College, London (United Kingdom). Dept. of Materials
  5. Univ. of Copenhagen (Denmark). Dept. of Chemistry
  6. Stockholm Univ. (Sweden). Fysikum
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); European Union (EU); Villum Foundation; Danish Ministry of Higher Education and Science; Danish Council for Independent Research
OSTI Identifier:
1471512
Grant/Contract Number:  
9455; AC02-76SF00515; 607417
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 122; Journal Issue: 2; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Pedersen, Anders F., Escudero-Escribano, Maria, Sebok, Bela, Bodin, Anders, Paoli, Elisa, Frydendal, Rasmus, Friebel, Daniel, Stephens, Ifan E. L., Rossmeisl, Jan, Chorkendorff, Ib, and Nilsson, Anders. Operando XAS Study of the Surface Oxidation State on a Monolayer IrOx on RuOx and Ru Oxide Based Nanoparticles for Oxygen Evolution in Acidic Media. United States: N. p., 2017. Web. doi:10.1021/acs.jpcb.7b06982.
Pedersen, Anders F., Escudero-Escribano, Maria, Sebok, Bela, Bodin, Anders, Paoli, Elisa, Frydendal, Rasmus, Friebel, Daniel, Stephens, Ifan E. L., Rossmeisl, Jan, Chorkendorff, Ib, & Nilsson, Anders. Operando XAS Study of the Surface Oxidation State on a Monolayer IrOx on RuOx and Ru Oxide Based Nanoparticles for Oxygen Evolution in Acidic Media. United States. https://doi.org/10.1021/acs.jpcb.7b06982
Pedersen, Anders F., Escudero-Escribano, Maria, Sebok, Bela, Bodin, Anders, Paoli, Elisa, Frydendal, Rasmus, Friebel, Daniel, Stephens, Ifan E. L., Rossmeisl, Jan, Chorkendorff, Ib, and Nilsson, Anders. Fri . "Operando XAS Study of the Surface Oxidation State on a Monolayer IrOx on RuOx and Ru Oxide Based Nanoparticles for Oxygen Evolution in Acidic Media". United States. https://doi.org/10.1021/acs.jpcb.7b06982. https://www.osti.gov/servlets/purl/1471512.
@article{osti_1471512,
title = {Operando XAS Study of the Surface Oxidation State on a Monolayer IrOx on RuOx and Ru Oxide Based Nanoparticles for Oxygen Evolution in Acidic Media},
author = {Pedersen, Anders F. and Escudero-Escribano, Maria and Sebok, Bela and Bodin, Anders and Paoli, Elisa and Frydendal, Rasmus and Friebel, Daniel and Stephens, Ifan E. L. and Rossmeisl, Jan and Chorkendorff, Ib and Nilsson, Anders},
abstractNote = {Here in this paper we present surface sensitive operando XAS L-edge measurements on IrOx/RuO2 thin films as well as mass-selected RuOx and Ru nanoparticles. We observed shifts of the white line XAS peak toward higher energies with applied electrochemical potential. Apart from the case of the metallic Ru nanoparticles, the observed potential dependencies were purely core-level shifts caused by a change in oxidation state, which indicates no structural changes. These findings can be explained by different binding energies of oxygenated species on the surface of IrOx and RuOx. Simulated XAS spectra show that the average Ir oxidation state change is strongly affected by the coverage of atomic O. The observed shifts in oxidation state suggest that the surface has a high coverage of O at potentials just below the potential where oxygen evolution is exergonic in free energy. In conclusion, this observation is consistent with the notion that the metal–oxygen bond is stronger than ideal.},
doi = {10.1021/acs.jpcb.7b06982},
journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
number = 2,
volume = 122,
place = {United States},
year = {Fri Oct 13 00:00:00 EDT 2017},
month = {Fri Oct 13 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 52 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The irreversible momentum of clean energy
journal, January 2017


Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
journal, October 2014

  • Benck, Jesse D.; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs500923c

Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide
journal, September 2015

  • Kortlever, Ruud; Shen, Jing; Schouten, Klaas Jan P.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 20
  • DOI: 10.1021/acs.jpclett.5b01559

X-ray Absorption Spectroscopy of Low Temperature Fuel Cell Catalysts
journal, October 2004

  • Russell, Andrea E.; Rose, Abigail
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020708r

A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151

An overview of hydrogen production technologies
journal, January 2009


A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction
journal, September 2016


Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013

  • McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja407115p

Oxygen evolution on well-characterized mass-selected Ru and RuO 2 nanoparticles
journal, January 2015

  • Paoli, Elisa A.; Masini, Federico; Frydendal, Rasmus
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC02685C

Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments
journal, July 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee-Chul
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz501061n

The oxygen electrode. Part 8.—Oxygen evolution at ruthenium dioxide anodes
journal, January 1977

  • Burke, Laurence D.; Murphy, Oliver J.; O'Neill, John F.
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 73, Issue 0
  • DOI: 10.1039/f19777301659

Electrocatalysis: understanding the success of DSA®
journal, May 2000


Protection of p + -n-Si Photoanodes by Sputter-Deposited Ir/IrO x Thin Films
journal, May 2014

  • Mei, Bastian; Seger, Brian; Pedersen, Thomas
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 11
  • DOI: 10.1021/jz500865g

Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy
journal, January 2012

  • Vesborg, Peter C. K.; Jaramillo, Thomas F.
  • RSC Advances, Vol. 2, Issue 21
  • DOI: 10.1039/c2ra20839c

An Investigation of the Electrochemistry of a Series of Metal Dioxides with Rutile‐Type Structure: MoO2,  WO 2, ReO2, RuO2, OsO2, and IrO2
journal, August 1977

  • Horkans, Jean; Shafer, M. W.
  • Journal of The Electrochemical Society, Vol. 124, Issue 8
  • DOI: 10.1149/1.2133528

Orientation-Dependent Oxygen Evolution Activities of Rutile IrO 2 and RuO 2
journal, April 2014

  • Stoerzinger, Kelsey A.; Qiao, Liang; Biegalski, Michael D.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 10
  • DOI: 10.1021/jz500610u

Orientation-Dependent Oxygen Evolution on RuO 2 without Lattice Exchange
journal, March 2017


Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO 2 (110)
journal, February 2017

  • Kuo, Ding-Yuan; Kawasaki, Jason K.; Nelson, Jocienne N.
  • Journal of the American Chemical Society, Vol. 139, Issue 9
  • DOI: 10.1021/jacs.6b11932

Electrocatalysis in the anodic evolution of oxygen and chlorine
journal, November 1984


Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media
journal, October 1986


Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials
journal, July 2012

  • Reier, Tobias; Oezaslan, Mehtap; Strasser, Peter
  • ACS Catalysis, Vol. 2, Issue 8
  • DOI: 10.1021/cs3003098

(Invited) Efficient Generation of High Energy Density Fuel from Water
conference, January 2012

  • Ayers, Katherine E.; Dalton, Luke T.; Anderson, Everett B.
  • 220th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3702410

Dissolution of Noble Metals during Oxygen Evolution in Acidic Media
journal, July 2014

  • Cherevko, Serhiy; Zeradjanin, Aleksandar R.; Topalov, Angel A.
  • ChemCatChem, Vol. 6, Issue 8
  • DOI: 10.1002/cctc.201402194

Fine-tuning the activity of oxygen evolution catalysts: The effect of oxidation pre-treatment on size-selected Ru nanoparticles
journal, March 2016


Electrocatalytic Oxygen Evolution Reaction in Acidic Environments - Reaction Mechanisms and Catalysts
journal, October 2016

  • Reier, Tobias; Nong, Hong Nhan; Teschner, Detre
  • Advanced Energy Materials, Vol. 7, Issue 1
  • DOI: 10.1002/aenm.201601275

Electrolysis of water on (oxidized) metal surfaces
journal, December 2005


Electrolysis of water on oxide surfaces
journal, September 2007


Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts: In Situ XAS and DFT Study
journal, May 2012

  • Friebel, Daniel; Viswanathan, Venkatasubramanian; Miller, Daniel J.
  • Journal of the American Chemical Society, Vol. 134, Issue 23
  • DOI: 10.1021/ja3003765

Electrochemical Oxidation of Size-Selected Pt Nanoparticles Studied Using in Situ High-Energy-Resolution X-ray Absorption Spectroscopy
journal, September 2012

  • Merte, Lindsay R.; Behafarid, Farzad; Miller, Daniel J.
  • ACS Catalysis, Vol. 2, Issue 11
  • DOI: 10.1021/cs300494f

The Reaction Mechanism with Free Energy Barriers at Constant Potentials for the Oxygen Evolution Reaction at the IrO 2 (110) Surface
journal, December 2016

  • Ping, Yuan; Nielsen, Robert J.; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b07557

Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation
journal, April 2005

  • Pratontep, S.; Carroll, S. J.; Xirouchaki, C.
  • Review of Scientific Instruments, Vol. 76, Issue 4
  • DOI: 10.1063/1.1869332

Catalytic Reaction Processes Revealed by Scanning Probe Microscopy
journal, April 2015


Structure and Dynamics of Reactant Coadsorption on Single Crystal Model Catalysts by HP-STM and AP-XPS: A Mini Review
journal, January 2016


Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks
journal, January 2015

  • Wu, Cheng Hao; Weatherup, Robert S.; Salmeron, Miquel B.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 45
  • DOI: 10.1039/C5CP04058B

Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS
journal, September 2016


In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction
journal, May 2014

  • Sanchez Casalongue, Hernan G.; Ng, May Ling; Kaya, Sarp
  • Angewandte Chemie, Vol. 126, Issue 28
  • DOI: 10.1002/ange.201402311

Water-Splitting Electrocatalysis in Acid Conditions Using Ruthenate-Iridate Pyrochlores
journal, September 2014

  • Sardar, Kripasindhu; Petrucco, Enrico; Hiley, Craig I.
  • Angewandte Chemie International Edition, Vol. 53, Issue 41
  • DOI: 10.1002/anie.201406668

A new high transmission infinite range mass selector for cluster and nanoparticle beams
journal, December 1999

  • von Issendorff, B.; Palmer, R. E.
  • Review of Scientific Instruments, Vol. 70, Issue 12
  • DOI: 10.1063/1.1150102

Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction
journal, July 2014

  • Hernandez-Fernandez, Patricia; Masini, Federico; McCarthy, David N.
  • Nature Chemistry, Vol. 6, Issue 8
  • DOI: 10.1038/nchem.2001

Exploring the phase space of time of flight mass selected Pt x Y nanoparticles
journal, January 2014

  • Masini, Federico; Hernández-Fernández, Patricia; Deiana, Davide
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 48
  • DOI: 10.1039/C4CP02144D

A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource
journal, May 2013

  • Sokaras, D.; Weng, T. -C.; Nordlund, D.
  • Review of Scientific Instruments, Vol. 84, Issue 5
  • DOI: 10.1063/1.4803669

In situ X-ray probing reveals fingerprints of surface platinum oxide
journal, January 2011

  • Friebel, Daniel; Miller, Daniel J.; O’Grady, Christopher P.
  • Phys. Chem. Chem. Phys., Vol. 13, Issue 1
  • DOI: 10.1039/C0CP01434F

Parameter-free calculations of X-ray spectra with FEFF9
journal, January 2010

  • Rehr, John J.; Kas, Joshua J.; Vila, Fernando D.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 21
  • DOI: 10.1039/b926434e

Spectral sharpening of the Pt L edges by high-resolution x-ray emission
journal, November 2002


Natural widths of atomic K and L levels, K α X‐ray lines and several K L L Auger lines
journal, April 1979

  • Krause, M. O.; Oliver, J. H.
  • Journal of Physical and Chemical Reference Data, Vol. 8, Issue 2
  • DOI: 10.1063/1.555595

Multiplet effects in the Ru L 2 , 3 x-ray-absorption spectra of Ru(IV) and Ru(V) compounds
journal, February 2000


Spin-orbit coupling in iridium-based 5 d compounds probed by x-ray absorption spectroscopy
journal, November 2012


IrO 2 -Based Disperse-Phase Electrocatalysts: A Complementary Study by Means of the Cavity-Microelectrode and Ex-Situ X-ray Absorption Spectroscopy
journal, March 2012

  • Minguzzi, Alessandro; Locatelli, Cristina; Cappelletti, Giuseppe
  • The Journal of Physical Chemistry A, Vol. 116, Issue 25
  • DOI: 10.1021/jp212310v

Electrochemical chlorine evolution at rutile oxide (110) surfaces
journal, January 2010

  • Hansen, Heine A.; Man, Isabela C.; Studt, Felix
  • Phys. Chem. Chem. Phys., Vol. 12, Issue 1
  • DOI: 10.1039/B917459A

Characterization of Various Oxygen Species on an Oxide Surface:  RuO 2 (110)
journal, May 2001

  • Kim, Y. D.; Seitsonen, A. P.; Wendt, S.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 18
  • DOI: 10.1021/jp003213j

Structure of Hydrous Ruthenium Oxides:  Implications for Charge Storage
journal, June 1999

  • McKeown, David A.; Hagans, Patrick L.; Carette, Linda P. L.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 23
  • DOI: 10.1021/jp990096n

The irreversible momentum of clean energy
journal, January 2017


Works referencing / citing this record:

Iron tungsten mixed composite as a robust oxygen evolution electrocatalyst
journal, January 2019

  • Wang, Chizhong; Wang, Rong; Peng, Yue
  • Chemical Communications, Vol. 55, Issue 73
  • DOI: 10.1039/c9cc05287a

Understanding supported noble metal catalysts using first-principles calculations
journal, November 2019

  • Rice, Peter S.; Hu, P.
  • The Journal of Chemical Physics, Vol. 151, Issue 18
  • DOI: 10.1063/1.5126090

Recent Progress in Bifunctional Electrocatalysts for Overall Water Splitting under Acidic Conditions
journal, May 2019

  • Jin, Haneul; Joo, Jinwhan; Chaudhari, Nitin K.
  • ChemElectroChem, Vol. 6, Issue 13
  • DOI: 10.1002/celc.201900507

Revealing the structural transformation of rutile RuO 2 via in situ X-ray absorption spectroscopy during the oxygen evolution reaction
journal, January 2019

  • Chang, Chia-Jui; Chu, You-Chiuan; Yan, Hao-Yu
  • Dalton Transactions, Vol. 48, Issue 21
  • DOI: 10.1039/c9dt00138g

Recent Advances on Water‐Splitting Electrocatalysis Mediated by Noble‐Metal‐Based Nanostructured Materials
journal, November 2019

  • Li, Yingjie; Sun, Yingjun; Qin, Yingnan
  • Advanced Energy Materials, Vol. 10, Issue 11
  • DOI: 10.1002/aenm.201903120

Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media
journal, February 2019