Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6
Abstract
An ordinary Hall effect in a conductor arises due to the Lorentz force acting on the charge carriers. In ferromagnets, an additional contribution to the Hall effect, the anomalous Hall effect (AHE), appears proportional to the magnetization. While the AHE is not seen in a collinear antiferromagnet, with zero net magnetization, recently it has been shown that an intrinsic AHE can be non-zero in non-collinear antiferromagnets as well as in topological materials hosting Weyl nodes near the Fermi energy. Here we report a large anomalous Hall effect with Hall conductivity of 27 Ω-1 cm-1 in a chiral-lattice antiferromagnet, CoNb3S6 consisting of a small intrinsic ferromagnetic component (approximate to 0.0013 μB per Co) along c-axis. This small moment alone cannot explain the observed size of the AHE. Finally, we attribute the AHE to either formation of a complex magnetic texture or the combined effect of the small intrinsic moment on the electronic band structure.
- Authors:
-
- Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
- Univ. of Chicago, IL (United States). ChemMatCARS
- Publication Date:
- Research Org.:
- Argonne National Lab. (ANL), Argonne, IL (United States)
- Sponsoring Org.:
- USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
- OSTI Identifier:
- 1471511
- Grant/Contract Number:
- AC02-06CH11357
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Nature Communications
- Additional Journal Information:
- Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
- Publisher:
- Nature Publishing Group
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 36 MATERIALS SCIENCE; Anomalous Hall effect; Chiral magnetic textures; Non-collinear antiferromagnet; Non-coplanar antiferromagnet; Weyl semimetal
Citation Formats
Ghimire, Nirmal J., Botana, A. S., Jiang, J. S., Zhang, Junjie, Chen, Y. -S., and Mitchell, J. F. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. United States: N. p., 2018.
Web. doi:10.1038/s41467-018-05756-7.
Ghimire, Nirmal J., Botana, A. S., Jiang, J. S., Zhang, Junjie, Chen, Y. -S., & Mitchell, J. F. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. United States. https://doi.org/10.1038/s41467-018-05756-7
Ghimire, Nirmal J., Botana, A. S., Jiang, J. S., Zhang, Junjie, Chen, Y. -S., and Mitchell, J. F. Thu .
"Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6". United States. https://doi.org/10.1038/s41467-018-05756-7. https://www.osti.gov/servlets/purl/1471511.
@article{osti_1471511,
title = {Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6},
author = {Ghimire, Nirmal J. and Botana, A. S. and Jiang, J. S. and Zhang, Junjie and Chen, Y. -S. and Mitchell, J. F.},
abstractNote = {An ordinary Hall effect in a conductor arises due to the Lorentz force acting on the charge carriers. In ferromagnets, an additional contribution to the Hall effect, the anomalous Hall effect (AHE), appears proportional to the magnetization. While the AHE is not seen in a collinear antiferromagnet, with zero net magnetization, recently it has been shown that an intrinsic AHE can be non-zero in non-collinear antiferromagnets as well as in topological materials hosting Weyl nodes near the Fermi energy. Here we report a large anomalous Hall effect with Hall conductivity of 27 Ω-1 cm-1 in a chiral-lattice antiferromagnet, CoNb3S6 consisting of a small intrinsic ferromagnetic component (approximate to 0.0013 μB per Co) along c-axis. This small moment alone cannot explain the observed size of the AHE. Finally, we attribute the AHE to either formation of a complex magnetic texture or the combined effect of the small intrinsic moment on the electronic band structure.},
doi = {10.1038/s41467-018-05756-7},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {8}
}
Works referenced in this record:
Evidence for magnetic Weyl fermions in a correlated metal
journal, September 2017
- Kuroda, K.; Tomita, T.; Suzuki, M. -T.
- Nature Materials, Vol. 16, Issue 11
Gauge fields in real and momentum spaces in magnets: monopoles and skyrmions
journal, December 2012
- Nagaosa, N.; Yu, X. Z.; Tokura, Y.
- Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 370, Issue 1981
Generalized Gradient Approximation Made Simple
journal, October 1996
- Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
- Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
Band-structure calculations of Fe 1/3 TaS 2 and Mn 1/3 TaS 2 , and transport and magnetic properties of Fe 0.28 TaS 2
journal, September 1989
- Dijkstra, J.; Zijlema, P. J.; Bruggen, C. F. van
- Journal of Physics: Condensed Matter, Vol. 1, Issue 36
Magnetic structure of Co 1/3 NbS 2 and Co 1/3 TaS 2
journal, May 1983
- Parkin, S. S. P.; Marseglia, E. A.; Brown, P. J.
- Journal of Physics C: Solid State Physics, Vol. 16, Issue 14
Itinerant Electron-Driven Chiral Magnetic Ordering and Spontaneous Quantum Hall Effect in Triangular Lattice Models
journal, October 2008
- Martin, Ivar; Batista, C. D.
- Physical Review Letters, Vol. 101, Issue 15
Large Topological Hall Effect in a Short-Period Helimagnet MnGe
journal, April 2011
- Kanazawa, N.; Onose, Y.; Arima, T.
- Physical Review Letters, Vol. 106, Issue 15
Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature
journal, October 2015
- Nakatsuji, Satoru; Kiyohara, Naoki; Higo, Tomoya
- Nature, Vol. 527, Issue 7577
Composite Weyl nodes stabilized by screw symmetry with and without time-reversal invariance
journal, July 2017
- Tsirkin, Stepan S.; Souza, Ivo; Vanderbilt, David
- Physical Review B, Vol. 96, Issue 4
Large topological Hall effect in the non-collinear phase of an antiferromagnet
journal, March 2014
- Sürgers, Christoph; Fischer, Gerda; Winkel, Patrick
- Nature Communications, Vol. 5, Issue 1
Massive Dirac fermions in a ferromagnetic kagome metal
journal, March 2018
- Ye, Linda; Kang, Mingu; Liu, Junwei
- Nature, Vol. 555, Issue 7698
Galvanomagnetic Effects in Iron Whiskers
journal, April 1967
- Dheer, P. N.
- Physical Review, Vol. 156, Issue 2
Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn 3 Ge
journal, April 2016
- Nayak, Ajaya K.; Fischer, Julia Erika; Sun, Yan
- Science Advances, Vol. 2, Issue 4
Spin anisotropy and quantum Hall effect in the kagomé lattice: Chiral spin state based on a ferromagnet
journal, September 2000
- Ohgushi, Kenya; Murakami, Shuichi; Nagaosa, Naoto
- Physical Review B, Vol. 62, Issue 10
Reflectivity spectra of some first row transition metal intercalates of NbS 2
journal, January 1976
- Beal, A. R.; Liang, W. Y.
- Philosophical Magazine, Vol. 33, Issue 1
High-pressure study of transport properties in Co NbS
journal, August 2011
- Barišić, N.; Smiljanić, I.; Popčević, P.
- Physical Review B, Vol. 84, Issue 7
Electrical and magnetic properties of some first row transition metal intercalates of niobium disulphide
journal, May 1977
- Friend, R. H.; Beal, A. R.; Yoffe, A. D.
- The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, Vol. 35, Issue 5
Anomalous Hall effect and magnetoresistance in the layered ferromagnet : The inelastic regime
journal, January 2008
- Checkelsky, J. G.; Lee, Minhyea; Morosan, E.
- Physical Review B, Vol. 77, Issue 1
An alternative way of linearizing the augmented plane-wave method
journal, March 2000
- Sjöstedt, E.; Nordström, L.; Singh, D. J.
- Solid State Communications, Vol. 114, Issue 1
Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy
journal, June 2017
- Hou, Zhipeng; Ren, Weijun; Ding, Bei
- Advanced Materials, Vol. 29, Issue 29
Spin--Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems
book, January 2003
- Winkler, Roland; Höhler, Gerhard; Kühn, Johann H.
- Springer Tracts in Modern Physics, Vol. 191
Topological Hall Effect in the Phase of MnSi
journal, May 2009
- Neubauer, A.; Pfleiderer, C.; Binz, B.
- Physical Review Letters, Vol. 102, Issue 18
Orbital Ferromagnetism and Anomalous Hall Effect in Antiferromagnets on the Distorted fcc Lattice
journal, August 2001
- Shindou, Ryuichi; Nagaosa, Naoto
- Physical Review Letters, Vol. 87, Issue 11
Topological properties and dynamics of magnetic skyrmions
journal, December 2013
- Nagaosa, Naoto; Tokura, Yoshinori
- Nature Nanotechnology, Vol. 8, Issue 12
Unconventional Anomalous Hall Effect Enhanced by a Noncoplanar Spin Texture in the Frustrated Kondo Lattice
journal, January 2007
- Machida, Y.; Nakatsuji, S.; Maeno, Y.
- Physical Review Letters, Vol. 98, Issue 5
Anomalous Hall Effect in Weyl Metals
journal, October 2014
- Burkov, A. A.
- Physical Review Letters, Vol. 113, Issue 18
Emergent electrodynamics of skyrmions in a chiral magnet
journal, February 2012
- Schulz, T.; Ritz, R.; Bauer, A.
- Nature Physics, Vol. 8, Issue 4
The crystal structure and magnetic susceptibilities of MnNb3S6, FeNb3S6, CoNb3S6 and NiNb3S6
journal, May 1970
- Anzenhofer, K.; Van Den Berg, J. M.; Cossee, P.
- Journal of Physics and Chemistry of Solids, Vol. 31, Issue 5
Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets
journal, December 2002
- Bogdanov, A. N.; Rößler, U. K.; Wolf, M.
- Physical Review B, Vol. 66, Issue 21
Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism
journal, January 2014
- Chen, Hua; Niu, Qian; MacDonald, A. H.
- Physical Review Letters, Vol. 112, Issue 1
Anomalous Hall effect
journal, May 2010
- Nagaosa, Naoto; Sinova, Jairo; Onoda, Shigeki
- Reviews of Modern Physics, Vol. 82, Issue 2
Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature
journal, June 2016
- Nakatsuji, S.; Kiyohara, N.; Higo, T.
- Nature, Vol. 534, Issue 7607
Twisting the thermoelectric potential
journal, January 2021
- May, Andrew F.; Sales, Brian C.
- Nature Materials, Vol. 20, Issue 4
Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy
journal, February 2018
- Hou, Zhipeng; Ren, Weijun; Ding, Bei
- Advanced Materials, Vol. 30, Issue 7
Orbital Ferromagnetism and Anomalous Hall Effect in Antiferromagnets on the Distorted fcc Lattice
text, January 2001
- Nagaosa, Naoto; Shindou, Ryuichi
- The American Physical Society
Anomalous Hall effect arising from noncollinear antiferromagnetism
text, January 2013
- Chen, Hua; Niu, Qian; MacDonald, A. H.
- arXiv
Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on distorted fcc lattice
text, January 2001
- Shindou, Ryuichi; Nagaosa, Naoto
- arXiv
Works referencing / citing this record:
Real-space Berry curvature of itinerant electron systems with spin-orbit interaction
journal, January 2020
- Zhang, Shang-Shun; Ishizuka, Hiroaki; Zhang, Hao
- Physical Review B, Vol. 101, Issue 2
Critical behavior of intercalated quasi-van der Waals ferromagnet
journal, November 2019
- Zhang, Chenhui; Yuan, Ye; Wang, Mao
- Physical Review Materials, Vol. 3, Issue 11
Creating Weyl nodes and controlling their energy by magnetization rotation
journal, December 2019
- Ghimire, Madhav Prasad; Facio, Jorge I.; You, Jhih-Shih
- Physical Review Research, Vol. 1, Issue 3
Creating Weyl nodes and controlling their energy by magnetization rotation
text, January 2019
- Ghimire, Madhav Prasad; Facio, Jorge I.; You, Jhih-Shih
- arXiv