DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of the electron-lattice coupling strength of copper with ultrafast MeV electron diffraction

Abstract

Electron-lattice coupling strength governs the energy transfer between electrons and the lattice and is important for understanding the material behavior under highly non-equilibrium conditions. We report the results of employing time-resolved electron diffraction at MeV energies to directly study the electron-lattice coupling strength in 40-nm-thick polycrystalline copper excited by femtosecond optical lasers. The temporal evolution of lattice temperature at various pump fluence conditions were obtained from the measurements of the Debye-Waller decay of multiple diffraction peaks. We observed the temperature dependence of the electron-lattice relaxation time which is a result of the temperature dependence of electron heat capacity. Comparison with two-temperature model simulations reveals an electron-lattice coupling strength of (0.9 ± 0.1) × 1017 W/m3/K for copper.

Authors:
 [1];  [2]; ORCiD logo [1];  [1];  [1];  [3]; ORCiD logo [4]; ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Southern Illinois Univ., Edwardsville, IL (United States). Dept. of Physics
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Rostock (Germany). Inst. of Physics
  4. Univ. of Rostock (Germany). Inst. of Physics
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Rostock (Germany)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES); USDOE Office of Science (SC), Basic Energy Sciences (BES); German Research Foundation (DFG)
OSTI Identifier:
1490446
Alternate Identifier(s):
OSTI ID: 1471442
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 89; Journal Issue: 10; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; polycrystalline material; ultrafast lasers; thermodynamic properties; electron diffraction

Citation Formats

Mo, M. Z., Becker, V., Ofori-Okai, B. K., Shen, X., Chen, Z., Witte, B., Redmer, R., Li, R. K., Dunning, M., Weathersby, S. P., Wang, X. J., and Glenzer, S. H. Determination of the electron-lattice coupling strength of copper with ultrafast MeV electron diffraction. United States: N. p., 2018. Web. doi:10.1063/1.5035368.
Mo, M. Z., Becker, V., Ofori-Okai, B. K., Shen, X., Chen, Z., Witte, B., Redmer, R., Li, R. K., Dunning, M., Weathersby, S. P., Wang, X. J., & Glenzer, S. H. Determination of the electron-lattice coupling strength of copper with ultrafast MeV electron diffraction. United States. https://doi.org/10.1063/1.5035368
Mo, M. Z., Becker, V., Ofori-Okai, B. K., Shen, X., Chen, Z., Witte, B., Redmer, R., Li, R. K., Dunning, M., Weathersby, S. P., Wang, X. J., and Glenzer, S. H. Wed . "Determination of the electron-lattice coupling strength of copper with ultrafast MeV electron diffraction". United States. https://doi.org/10.1063/1.5035368. https://www.osti.gov/servlets/purl/1490446.
@article{osti_1490446,
title = {Determination of the electron-lattice coupling strength of copper with ultrafast MeV electron diffraction},
author = {Mo, M. Z. and Becker, V. and Ofori-Okai, B. K. and Shen, X. and Chen, Z. and Witte, B. and Redmer, R. and Li, R. K. and Dunning, M. and Weathersby, S. P. and Wang, X. J. and Glenzer, S. H.},
abstractNote = {Electron-lattice coupling strength governs the energy transfer between electrons and the lattice and is important for understanding the material behavior under highly non-equilibrium conditions. We report the results of employing time-resolved electron diffraction at MeV energies to directly study the electron-lattice coupling strength in 40-nm-thick polycrystalline copper excited by femtosecond optical lasers. The temporal evolution of lattice temperature at various pump fluence conditions were obtained from the measurements of the Debye-Waller decay of multiple diffraction peaks. We observed the temperature dependence of the electron-lattice relaxation time which is a result of the temperature dependence of electron heat capacity. Comparison with two-temperature model simulations reveals an electron-lattice coupling strength of (0.9 ± 0.1) × 1017 W/m3/K for copper.},
doi = {10.1063/1.5035368},
journal = {Review of Scientific Instruments},
number = 10,
volume = 89,
place = {United States},
year = {Wed Sep 19 00:00:00 EDT 2018},
month = {Wed Sep 19 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Experimental setup and (b) typical radially averaged lineout of the electron scattering pattern for the unpumped polycrystalline fcc copper thin film.

Save / Share:

Works referenced in this record:

Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction
journal, September 2017

  • Sokolowski-Tinten, K.; Shen, X.; Zheng, Q.
  • Structural Dynamics, Vol. 4, Issue 5
  • DOI: 10.1063/1.4995258

The Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold
journal, February 2009


Time-resolved observation of electron-phonon relaxation in copper
journal, March 1987


Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter
journal, August 2016

  • Mo, M. Z.; Shen, X.; Chen, Z.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4960070

Measurement of Electron-Ion Relaxation in Warm Dense Copper
journal, January 2016

  • Cho, B. I.; Ogitsu, T.; Engelhorn, K.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep18843

Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction
journal, June 2018


Femtosecond mega-electron-volt electron microdiffraction
journal, January 2018


Thermal boundary resistance for gold and CoFe alloy on silicon nitride films
journal, April 2012

  • Jeong, Taehee; Zhu, Jian-Gang; Chung, Suk
  • Journal of Applied Physics, Vol. 111, Issue 8
  • DOI: 10.1063/1.3703571

Substrate influence in electron–phonon coupling measurements in thin Au films
journal, May 2007


Transient (000)-order attenuation effects in ultrafast transmission electron diffraction
journal, March 2011

  • Ligges, Manuel; Rajković, Ivan; Streubühr, Carla
  • Journal of Applied Physics, Vol. 109, Issue 6
  • DOI: 10.1063/1.3554405

Heat Capacity of Reference Materials: Cu and W
journal, October 1984

  • White, G. K.; Collocott, S. J.
  • Journal of Physical and Chemical Reference Data, Vol. 13, Issue 4
  • DOI: 10.1063/1.555728

Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory
journal, July 2015

  • Weathersby, S. P.; Brown, G.; Centurion, M.
  • Review of Scientific Instruments, Vol. 86, Issue 7
  • DOI: 10.1063/1.4926994

Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films
journal, January 2009

  • Hopkins, Patrick E.; Kassebaum, Jared L.; Norris, Pamela M.
  • Journal of Applied Physics, Vol. 105, Issue 2
  • DOI: 10.1063/1.3068476

Theory of Superconductivity
journal, May 1965

  • Schrieffer, J. R.; Mansfield, John E.
  • Physics Today, Vol. 18, Issue 5
  • DOI: 10.1063/1.3047438

Femtosecond mega-electron-volt electron microdiffraction
preprint, January 2017


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.