skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li-O2 Batteries: Recent Progress and Perspective

Abstract

Energy storage challenges have triggered growing interest in various battery technologies and electrocatalysis. As a particularly promising variety, the Li–O2 battery with an extremely high energy density is of great significance, offering tremendous opportunities to improve cell performance via understanding catalytic mechanisms and the exploration of new materials. Furthermore, focus on nonaqueous electrolyte–based Li–O2 batteries has markedly intensified since there could be a higher probability of commercialization, compared to that of solid–state or aqueous electrolytes. The recent advancements of the nonaqueous Li–O2 battery in terms of fundamental understanding and material challenges, including electrolyte stability, water effect, and noncarbon cathode materials are summarized in this review. Further, the current status of water impact on discharge products, possible mechanisms, and parasitic reactions in nonaqueous electrolytes are reviewed for the first time. The key challenges of noncarbon oxygen electrode materials, such as noble metals and metal oxide–based cathodes, transition metals, transition metal compounds (carbides, oxides) based cathodes as well as noncarbon supported catalysts are discussed. In conclusion, this review concludes with a perspective on future research directions for nonaqueous Li–O2 batteries.

Authors:
 [1];  [2];  [2];  [3];  [1];  [2]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Univ. of Waterloo, Waterloo, ON (Canada)
  3. Argonne National Lab. (ANL), Lemont, IL (United States); Imam Abdulrahman Bin Faisal University, Dammam (Saudi Arabia); Stanford Univ., Stanford, CA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE
OSTI Identifier:
1471419
Alternate Identifier(s):
OSTI ID: 1439402
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 22; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; Li-O2 batteries; electrode materials; electrolytes; nonaqueous

Citation Formats

Ma, Lu, Yu, Tongwen, Tzoganakis, Evangelos, Amine, Khalil, Wu, Tianpin, Chen, Zhongwei, and Lu, Jun. Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li-O2 Batteries: Recent Progress and Perspective. United States: N. p., 2018. Web. doi:10.1002/aenm.201800348.
Ma, Lu, Yu, Tongwen, Tzoganakis, Evangelos, Amine, Khalil, Wu, Tianpin, Chen, Zhongwei, & Lu, Jun. Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li-O2 Batteries: Recent Progress and Perspective. United States. doi:10.1002/aenm.201800348.
Ma, Lu, Yu, Tongwen, Tzoganakis, Evangelos, Amine, Khalil, Wu, Tianpin, Chen, Zhongwei, and Lu, Jun. Tue . "Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li-O2 Batteries: Recent Progress and Perspective". United States. doi:10.1002/aenm.201800348. https://www.osti.gov/servlets/purl/1471419.
@article{osti_1471419,
title = {Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li-O2 Batteries: Recent Progress and Perspective},
author = {Ma, Lu and Yu, Tongwen and Tzoganakis, Evangelos and Amine, Khalil and Wu, Tianpin and Chen, Zhongwei and Lu, Jun},
abstractNote = {Energy storage challenges have triggered growing interest in various battery technologies and electrocatalysis. As a particularly promising variety, the Li–O2 battery with an extremely high energy density is of great significance, offering tremendous opportunities to improve cell performance via understanding catalytic mechanisms and the exploration of new materials. Furthermore, focus on nonaqueous electrolyte–based Li–O2 batteries has markedly intensified since there could be a higher probability of commercialization, compared to that of solid–state or aqueous electrolytes. The recent advancements of the nonaqueous Li–O2 battery in terms of fundamental understanding and material challenges, including electrolyte stability, water effect, and noncarbon cathode materials are summarized in this review. Further, the current status of water impact on discharge products, possible mechanisms, and parasitic reactions in nonaqueous electrolytes are reviewed for the first time. The key challenges of noncarbon oxygen electrode materials, such as noble metals and metal oxide–based cathodes, transition metals, transition metal compounds (carbides, oxides) based cathodes as well as noncarbon supported catalysts are discussed. In conclusion, this review concludes with a perspective on future research directions for nonaqueous Li–O2 batteries.},
doi = {10.1002/aenm.201800348},
journal = {Advanced Energy Materials},
number = 22,
volume = 8,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Field emission scanning electron microscopic (FESEM) images of the discharged SP cathode when the discharge capacity is limited to 3,000 mAh g 1. White scale bars, 1 μm. Green scale bars, 400 nm. (b) The FESEM images of the discharged HSC deposited onto CP cathode. White scalemore » bars, 1 μm. Green scale bars, 400 nm. (c) The images of the discharged P-HSC deposited onto CP cathode. White scale bars, 1 μm. Green scale bars, 400 nm. The insets in a-c are the corresponding enlarged FESEM images. (d) Corresponding PXRD patterns of the three kinds of discharged cathode. It is found that the PXRD peaks can be assigned to Li2O2, although the morphology of the discharge product is different. Reproduced with permission. Copyright 2013, Nature Publishing Group.« less

Save / Share:

Works referenced in this record:

Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage
journal, January 2015


A Reversible and Higher-Rate Li-O2 Battery
journal, July 2012


Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air
journal, December 2010

  • Lee, Jang-Soo; Tai Kim, Sun; Cao, Ruiguo
  • Advanced Energy Materials, Vol. 1, Issue 1, p. 34-50
  • DOI: 10.1002/aenm.201000010

The effects of moisture contamination in the Li-O2 battery
journal, December 2014


Regulated Breathing Effect of Silicon Negative Electrode for Dramatically Enhanced Performance of Li-Ion Battery
journal, January 2015

  • Xiao, Xingcheng; Zhou, Weidong; Kim, Youngnam
  • Advanced Functional Materials, Vol. 25, Issue 9
  • DOI: 10.1002/adfm.201403629

Li–air batteries: Importance of singlet oxygen
journal, April 2017


An aqueous, polymer-based redox-flow battery using non-corrosive, safe and low-cost materials
journal, October 2015

  • Janoschka, Tobias; Martin, Norbert; Martin, Udo
  • Nature, Vol. 527, Issue 7576, p. 78-81
  • DOI: 10.1038/nature15746

Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb
journal, January 2015

  • He, Meng; Walter, Marc; Kravchyk, Kostiantyn V.
  • Nanoscale, Vol. 7, Issue 2
  • DOI: 10.1039/C4NR05604C

Ultrafast and Directional Diffusion of Lithium in Phosphorene for High-Performance Lithium-Ion Battery
journal, February 2015

  • Li, Weifeng; Yang, Yanmei; Zhang, Gang
  • Nano Letters, Vol. 15, Issue 3
  • DOI: 10.1021/nl504336h

High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-Ion Battery
journal, May 2016

  • Li, Chao; Lou, Xiaobing; Shen, Ming
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 24
  • DOI: 10.1021/acsami.6b03648

The Role of Electrolyte Solvent Stability and Electrolyte Impurities in the Electrooxidation of Li 2 O 2 in Li-O 2 Batteries
journal, January 2014

  • Meini, Stefano; Solchenbach, Sophie; Piana, Michele
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.0621409jes

Reversibility of Noble Metal-Catalyzed Aprotic Li-O 2 Batteries
journal, November 2015


In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO 2 Lithium Batteries
journal, November 2016


Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk
journal, February 2014

  • He, Meng; Kravchyk, Kostiantyn; Walter, Marc
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404165c

Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O 2 battery
journal, April 2015


Mechanism of Oxygen Reduction in Aprotic Li–Air Batteries: The Role of Carbon Electrode Surface Structure
journal, January 2017

  • Belova, Alina I.; Kwabi, David G.; Yashina, Lada V.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 3
  • DOI: 10.1021/acs.jpcc.6b12221

An oxygen cathode with stable full discharge–charge capability based on 2D conducting oxide
journal, January 2015

  • Liao, Kaiming; Wang, Xuebin; Sun, Yang
  • Energy & Environmental Science, Vol. 8, Issue 7
  • DOI: 10.1039/C5EE01451D

Selective Deposition of Ru Nanoparticles on TiSi 2 Nanonet and Its Utilization for Li 2 O 2 Formation and Decomposition
journal, June 2014

  • Xie, Jin; Yao, Xiahui; Madden, Ian P.
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja504431k

Three Dimensionally Ordered Mesoporous Carbon as a Stable, High-Performance Li-O 2 Battery Cathode
journal, February 2015

  • Xie, Jin; Yao, Xiahui; Cheng, Qingmei
  • Angewandte Chemie International Edition, Vol. 54, Issue 14
  • DOI: 10.1002/anie.201410786

Blood-Capillary-Inspired, Free-Standing, Flexible, and Low-Cost Super-Hydrophobic N-CNTs@SS Cathodes for High-Capacity, High-Rate, and Stable Li-Air Batteries
journal, January 2018

  • Yang, Xiao-Yang; Xu, Ji-Jing; Chang, Zhi-Wen
  • Advanced Energy Materials, Vol. 8, Issue 12
  • DOI: 10.1002/aenm.201702242

Aprotic and Aqueous Li–O2 Batteries
journal, April 2014

  • Lu, Jun; Li, Li; Park, Jin-Bum
  • Chemical Reviews, Vol. 114, Issue 11, p. 5611-5640
  • DOI: 10.1021/cr400573b

Dendrimer-Encapsulated Ruthenium Oxide Nanoparticles as Catalysts in Lithium-Oxygen Batteries
journal, September 2014

  • Bhattacharya, Priyanka; Nasybulin, Eduard N.; Engelhard, Mark H.
  • Advanced Functional Materials, Vol. 24, Issue 47
  • DOI: 10.1002/adfm.201402701

Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials
journal, January 2014

  • Roberts, Aled D.; Li, Xu; Zhang, Haifei
  • Chem. Soc. Rev., Vol. 43, Issue 13
  • DOI: 10.1039/C4CS00071D

Electrical energy storage systems: A comparative life cycle cost analysis
journal, February 2015


Surface Acidity as Descriptor of Catalytic Activity for Oxygen Evolution Reaction in Li-O 2 Battery
journal, October 2015

  • Zhu, Jinzhen; Wang, Fan; Wang, Beizhou
  • Journal of the American Chemical Society, Vol. 137, Issue 42
  • DOI: 10.1021/jacs.5b07792

Carbon-Free AZO/Ru Cathode for Li-Air Batteries
journal, January 2015

  • Wu, M.; Suk, J.; Jo, J. Y.
  • ECS Electrochemistry Letters, Vol. 4, Issue 6
  • DOI: 10.1149/2.0011507eel

Li-ion battery materials: present and future
journal, June 2015


A core–shell-structured TiO 2 (B) nanofiber@porous RuO 2 composite as a carbon-free catalytic cathode for Li–O 2 batteries
journal, January 2015

  • Guo, Ziyang; Li, Chao; Liu, Jingyuan
  • Journal of Materials Chemistry A, Vol. 3, Issue 42
  • DOI: 10.1039/C5TA06850A

The effect of water on discharge product growth and chemistry in Li–O 2 batteries
journal, January 2016

  • Kwabi, David G.; Batcho, Thomas P.; Feng, Shuting
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 36
  • DOI: 10.1039/C6CP03695C

Review of energy storage system for wind power integration support
journal, January 2015


Carbon-free (Co, Mn) 3 O 4 nanowires@Ni electrodes for lithium–oxygen batteries
journal, January 2014

  • Lin, Xiujing; Shang, Yesheng; Huang, Tao
  • Nanoscale, Vol. 6, Issue 15
  • DOI: 10.1039/C4NR00292J

Implications of the Unpaired Spins in Li-O 2 Battery Chemistry and Electrochemistry: A Minireview
journal, July 2014


Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries
journal, December 2014

  • Aetukuri, Nagaphani B.; McCloskey, Bryan D.; García, Jeannette M.
  • Nature Chemistry, Vol. 7, Issue 1
  • DOI: 10.1038/nchem.2132

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery
journal, February 2015

  • Li, Bin; Nie, Zimin; Vijayakumar, M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7303

Nanostructured Metal Carbides for Aprotic Li–O 2 Batteries: New Insights into Interfacial Reactions and Cathode Stability
journal, June 2015

  • Kundu, Dipan; Black, Robert; Adams, Brian
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00721

Rechargeability of Li–air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li–air cells
journal, January 2013

  • Meini, Stefano; Tsiouvaras, Nikolaos; Schwenke, K. Uta
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 27
  • DOI: 10.1039/c3cp51112j

The Influence of Water and Protons on Li 2 O 2 Crystal Growth in Aprotic Li-O 2 Cells
journal, January 2015

  • Schwenke, K. Uta; Metzger, Michael; Restle, Tassilo
  • Journal of The Electrochemical Society, Vol. 162, Issue 4
  • DOI: 10.1149/2.0201504jes

Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes
journal, January 2014

  • Wang, Zhong-Li; Xu, Dan; Xu, Ji-Jing
  • Chem. Soc. Rev., Vol. 43, Issue 22
  • DOI: 10.1039/C3CS60248F

Sea-Urchin-like Cobalt Oxide Grown on Nickel Foam as a Carbon-Free Electrode for Lithium–Oxygen Batteries
journal, April 2015


Adsorption and Deposition of Li 2 O 2 on the Pristine and Oxidized TiC Surface by First-principles Calculation
journal, November 2015

  • Wang, Zhenyu; Chen, Xin; Cheng, Yonghong
  • The Journal of Physical Chemistry C, Vol. 119, Issue 46
  • DOI: 10.1021/acs.jpcc.5b06492

Recent advances in understanding of the mechanism and control of Li 2 O 2 formation in aprotic Li–O 2 batteries
journal, January 2017

  • Lyu, Zhiyang; Zhou, Yin; Dai, Wenrui
  • Chemical Society Reviews, Vol. 46, Issue 19
  • DOI: 10.1039/C7CS00255F

Influence of Lithium Salts on the Discharge Chemistry of Li–Air Cells
journal, April 2012

  • Veith, Gabriel M.; Nanda, Jagjit; Delmau, Laetitia H.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 10
  • DOI: 10.1021/jz300430s

Advanced Extremely Durable 3D Bifunctional Air Electrodes for Rechargeable Zinc-Air Batteries
journal, December 2013

  • Lee, Dong Un; Choi, Ja-Yeon; Feng, Kun
  • Advanced Energy Materials, Vol. 4, Issue 6
  • DOI: 10.1002/aenm.201301389

Robust Fe 3 Mo 3 C Supported IrMn Clusters as Highly Efficient Bifunctional Air Electrode for Metal-Air Battery
journal, August 2017


Computational design of molecules for an all-quinone redox flow battery
journal, January 2015

  • Er, Süleyman; Suh, Changwon; Marshak, Michael P.
  • Chemical Science, Vol. 6, Issue 2, p. 885-893
  • DOI: 10.1039/C4SC03030C

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
journal, August 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201000717

Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries
journal, December 2016

  • Zeng, Xian-Xiang; Yin, Ya-Xia; Li, Nian-Wu
  • Journal of the American Chemical Society, Vol. 138, Issue 49
  • DOI: 10.1021/jacs.6b10088

Humidity effect on electrochemical performance of Li–O2 batteries
journal, October 2014


Progress Towards Commercially Viable Li-S Battery Cells
journal, April 2015

  • Urbonaite, Sigita; Poux, Tiphaine; Novák, Petr
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500118

Nanostructured porous RuO 2 /MnO 2 as a highly efficient catalyst for high-rate Li–O 2 batteries
journal, January 2015

  • Wang, Guoqing; Huang, Liliang; Huang, Wei
  • Nanoscale, Vol. 7, Issue 48
  • DOI: 10.1039/C5NR07486J

Na-Ion Battery Anodes: Materials and Electrochemistry
journal, January 2016


Graphitic Carbon Conformal Coating of Mesoporous TiO 2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes
journal, September 2015

  • Liu, Hao; Li, Wei; Shen, Dengke
  • Journal of the American Chemical Society, Vol. 137, Issue 40
  • DOI: 10.1021/jacs.5b08743

A Flexible Sulfur-Graphene-Polypropylene Separator Integrated Electrode for Advanced Li-S Batteries
journal, November 2014


Reactivity of Electrolytes for Lithium-Oxygen Batteries with Li2O2
journal, January 2012

  • Chalasani, D.; Lucht, B. L.
  • ECS Electrochemistry Letters, Vol. 1, Issue 2
  • DOI: 10.1149/2.010202eel

Promoting Formation of Noncrystalline Li 2 O 2 in the Li–O 2 Battery with RuO 2 Nanoparticles
journal, September 2013

  • Yilmaz, Eda; Yogi, Chihiro; Yamanaka, Keisuke
  • Nano Letters, Vol. 13, Issue 10
  • DOI: 10.1021/nl4020952

An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System
journal, October 2016

  • Janoschka, Tobias; Martin, Norbert; Hager, Martin D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 46
  • DOI: 10.1002/anie.201606472

Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries
journal, January 2013

  • Gallant, Betar M.; Kwabi, David G.; Mitchell, Robert R.
  • Energy & Environmental Science, Vol. 6, Issue 8, p. 2518-2528
  • DOI: 10.1039/c3ee40998h

Nanoporous Ru as a Carbon- and Binder-Free Cathode for Li-O 2 Batteries
journal, March 2015


On the Mechanism of Nonaqueous Li–O 2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li–Air Batteries
journal, November 2012

  • McCloskey, Bryan D.; Scheffler, Rouven; Speidel, Angela
  • The Journal of Physical Chemistry C, Vol. 116, Issue 45
  • DOI: 10.1021/jp306680f

Electrochemical Performance of Solid-State Lithium-Air Batteries Using Carbon Nanotube Catalyst in the Air Electrode
journal, May 2012


The Lithium-Oxygen Battery with Ether-Based Electrolytes
journal, July 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Drewett, Nicholas E.
  • Angewandte Chemie International Edition, Vol. 50, Issue 37, p. 8609-8613
  • DOI: 10.1002/anie.201102357

Making Li-Air Batteries Rechargeable: Material Challenges
journal, May 2012

  • Shao, Yuyan; Ding, Fei; Xiao, Jie
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200688

Predicting Solvent Stability in Aprotic Electrolyte Li–Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O 2 •– )
journal, November 2011

  • Bryantsev, Vyacheslav S.; Giordani, Vincent; Walker, Wesley
  • The Journal of Physical Chemistry A, Vol. 115, Issue 44
  • DOI: 10.1021/jp2073914

Interactions of Dimethoxy Ethane with Li 2 O 2 Clusters and Likely Decomposition Mechanisms for Li–O 2 Batteries
journal, April 2013

  • Assary, Rajeev S.; Lau, Kah Chun; Amine, Khalil
  • The Journal of Physical Chemistry C, Vol. 117, Issue 16
  • DOI: 10.1021/jp400229n

Oxygen solubility and transport in Li–air battery electrolytes: establishing criteria and strategies for electrolyte design
journal, January 2017

  • Gittleson, Forrest S.; Jones, Reese E.; Ward, Donald K.
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C6EE02915A

Carbon-free cobalt oxide cathodes with tunable nanoarchitectures for rechargeable lithium–oxygen batteries
journal, January 2013

  • Riaz, Ahmer; Jung, Kyu-Nam; Chang, Wonyoung
  • Chemical Communications, Vol. 49, Issue 53
  • DOI: 10.1039/c3cc42794c

Advances and challenges in lithium-air batteries
journal, October 2017


Critical Challenges in Rechargeable Aprotic Li-O 2 Batteries
journal, February 2016

  • Feng, Ningning; He, Ping; Zhou, Haoshen
  • Advanced Energy Materials, Vol. 6, Issue 9
  • DOI: 10.1002/aenm.201502303

Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O 2 battery capacity
journal, July 2015

  • Burke, Colin M.; Pande, Vikram; Khetan, Abhishek
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 30
  • DOI: 10.1073/pnas.1505728112

Rational Design of MnO/Carbon Nanopeapods with Internal Void Space for High-Rate and Long-Life Li-Ion Batteries
journal, May 2014

  • Jiang, Hao; Hu, Yanjie; Guo, Shaojun
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn501310n

Mapping a stable solvent structure landscape for aprotic Li–air battery organic electrolytes
journal, January 2017

  • Feng, Shuting; Chen, Mao; Giordano, Livia
  • Journal of Materials Chemistry A, Vol. 5, Issue 45
  • DOI: 10.1039/C7TA08321A

Advances in understanding mechanisms underpinning lithium–air batteries
journal, September 2016


A lithium–oxygen battery based on lithium superoxide
journal, January 2016

  • Lu, Jun; Jung Lee, Yun; Luo, Xiangyi
  • Nature, Vol. 529, Issue 7586, p. 377-382
  • DOI: 10.1038/nature16484

Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems
journal, August 2015


Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries
journal, September 2013

  • Xu, Ji-Jing; Wang, Zhong-Li; Xu, Dan
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3438

A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator
journal, May 2017


Three-Dimensional Au Microlattices as Positive Electrodes for Li–O 2 Batteries
journal, May 2015


Porous AgPd-Pd Composite Nanotubes as Highly Efficient Electrocatalysts for Lithium-Oxygen Batteries
journal, September 2015

  • Luo, Wen-Bin; Gao, Xuan-Wen; Chou, Shu-Lei
  • Advanced Materials, Vol. 27, Issue 43
  • DOI: 10.1002/adma.201502262

The Lithium/Air Battery: Still an Emerging System or a Practical Reality?
journal, December 2014

  • Grande, Lorenzo; Paillard, Elie; Hassoun, Jusef
  • Advanced Materials, Vol. 27, Issue 5
  • DOI: 10.1002/adma.201403064

Directly grown Co 3 O 4 nanowire arrays on Ni-foam: structural effects of carbon-free and binder-free cathodes for lithium–oxygen batteries
journal, January 2014

  • Lee, Hongkyung; Kim, Yun-Jung; Lee, Dong Jin
  • Journal of Materials Chemistry A, Vol. 2, Issue 30
  • DOI: 10.1039/C4TA01311E

Mechanistic Role of Li + Dissociation Level in Aprotic Li–O 2 Battery
journal, February 2016

  • Sharon, Daniel; Hirsberg, Daniel; Salama, Michael
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 8
  • DOI: 10.1021/acsami.5b11483

Ruthenium-Based Electrocatalysts Supported on Reduced Graphene Oxide for Lithium-Air Batteries
journal, April 2013

  • Jung, Hun-Gi; Jeong, Yo Sub; Park, Jin-Bum
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn400477d

Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance
journal, July 2013

  • Sun, Bing; Munroe, Paul; Wang, Guoxiu
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02247

Simple synthesis of highly catalytic carbon-free MnCo2O4@Ni as an oxygen electrode for rechargeable Li–O2 batteries with long-term stability
journal, August 2015

  • Kalubarme, Ramchandra S.; Jadhav, Harsharaj S.; Ngo, Duc Tung
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep13266

Nonaqueous Li–Air Batteries: A Status Report
journal, October 2014

  • Luntz, Alan C.; McCloskey, Bryan D.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500054y

Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte
journal, February 2017


Hierarchical mesoporous/macroporous Co 3 O 4 ultrathin nanosheets as free-standing catalysts for rechargeable lithium–oxygen batteries
journal, January 2015

  • Wu, Feng; Zhang, Xiaoxiao; Zhao, Taolin
  • Journal of Materials Chemistry A, Vol. 3, Issue 34
  • DOI: 10.1039/C5TA04673D

A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries
journal, September 2015


Development of membranes and a study of their interfaces for rechargeable lithium–air battery
journal, December 2009


Controllable Urchin-Like NiCo 2 S 4 Microsphere Synergized with Sulfur-Doped Graphene as Bifunctional Catalyst for Superior Rechargeable Zn-Air Battery
journal, January 2018

  • Liu, Wenwen; Zhang, Jing; Bai, Zhengyu
  • Advanced Functional Materials, Vol. 28, Issue 11
  • DOI: 10.1002/adfm.201706675

Cycling Li-O2 batteries via LiOH formation and decomposition
journal, October 2015


Spatially Confined Li–Oxygen Interaction in the Tunnel of α-MnO 2 Catalyst for Li–Air Battery: A First-Principles Study
journal, July 2017

  • Zhou, Guang; Liu, Hongling; Ma, Zhongyun
  • The Journal of Physical Chemistry C, Vol. 121, Issue 30
  • DOI: 10.1021/acs.jpcc.7b01855

Combining Accurate O 2 and Li 2 O 2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li–O 2 Batteries
journal, August 2013

  • McCloskey, Bryan D.; Valery, Alexia; Luntz, Alan C.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 17
  • DOI: 10.1021/jz401659f

Rational Design of Si/SiO 2 @Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High-Performance Li-S Battery
journal, February 2016

  • Rehman, Sarish; Guo, Shaojun; Hou, Yanglong
  • Advanced Materials, Vol. 28, Issue 16
  • DOI: 10.1002/adma.201506111

Theoretical evidence for low kinetic overpotentials in Li-O 2 electrochemistry
journal, January 2013

  • Hummelshøj, J. S.; Luntz, A. C.; Nørskov, J. K.
  • The Journal of Chemical Physics, Vol. 138, Issue 3
  • DOI: 10.1063/1.4773242

Few-Layered SnS 2 on Few-Layered Reduced Graphene Oxide as Na-Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability
journal, November 2014

  • Zhang, Yandong; Zhu, Peiyi; Huang, Liliang
  • Advanced Functional Materials, Vol. 25, Issue 3
  • DOI: 10.1002/adfm.201402833

Optimization of Carbon- and Binder-Free Au Nanoparticle-Coated Ni Nanowire Electrodes for Lithium-Oxygen Batteries
journal, September 2014

  • Kim, Sun Tai; Choi, Nam-Soon; Park, Soojin
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201401030

A review on electrolyte additives for lithium-ion batteries
journal, November 2006


Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes
journal, January 2010


In situ methods for Li-ion battery research: A review of recent developments
journal, August 2015


Mechanically and Chemically Robust Sandwich-Structured C@Si@C Nanotube Array Li-Ion Battery Anodes
journal, January 2015

  • Liu, Jinyun; Li, Nan; Goodman, Matthew D.
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn507003z

Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries
journal, March 2017


On the Efficacy of Electrocatalysis in Nonaqueous Li–O 2 Batteries
journal, November 2011

  • McCloskey, Bryan D.; Scheffler, Rouven; Speidel, Angela
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207229n

A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes
journal, January 2017

  • Sun, Jiyang; Zhao, Ning; Li, Yiqiu
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep41217

Lithium salts for advanced lithium batteries: Li–metal, Li–O 2 , and Li–S
journal, January 2015

  • Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik
  • Energy & Environmental Science, Vol. 8, Issue 7
  • DOI: 10.1039/C5EE01215E

Carbon-, Binder-, and Precious Metal-Free Cathodes for Non-Aqueous Lithium–Oxygen Batteries: Nanoflake-Decorated Nanoneedle Oxide Arrays
journal, October 2014

  • Riaz, Ahmer; Jung, Kyu-Nam; Chang, Wonyoung
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 20
  • DOI: 10.1021/am504463b

The Effect of Water on the Discharge Capacity of a Non-Catalyzed Carbon Cathode for Li-O2 Batteries
journal, January 2012

  • Meini, Stefano; Piana, Michele; Tsiouvaras, Nikolaos
  • Electrochemical and Solid-State Letters, Vol. 15, Issue 4
  • DOI: 10.1149/2.005204esl

Hierarchical Ru nanospheres as highly effective cathode catalysts for Li–O 2 batteries
journal, January 2015

  • Su, D. W.; Dou, S. X.; Wang, G. X.
  • Journal of Materials Chemistry A, Vol. 3, Issue 36
  • DOI: 10.1039/C5TA05486A

Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes
journal, January 2013

  • Li, Fujun; Zhang, Tao; Zhou, Haoshen
  • Energy & Environmental Science, Vol. 6, Issue 4
  • DOI: 10.1039/c3ee00053b

A Carbon- and Binder-Free Nanostructured Cathode for High-Performance Nonaqueous Li-O 2 Battery
journal, June 2015


The water catalysis at oxygen cathodes of lithium–oxygen cells
journal, July 2015

  • Li, Fujun; Wu, Shichao; Li, De
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8843

Lithium–oxygen batteries: bridging mechanistic understanding and battery performance
journal, January 2013

  • Lu, Yi-Chun; Gallant, Betar M.; Kwabi, David G.
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee23966g

Towards greener and more sustainable batteries for electrical energy storage
journal, November 2014


Zur Chemie der Platinmetalle. RuO2 Chemischer Transport, Eigenschaften, thermischer Zerfall
journal, January 1963

  • Sch�fer, Harald; Schneidereit, Gerd; Gerhardt, Wilfried
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 319, Issue 5-6
  • DOI: 10.1002/zaac.19633190514

Lithium−Air Battery: Promise and Challenges
journal, June 2010

  • Girishkumar, G.; McCloskey, B.; Luntz, A. C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz1005384

Oxygen Bubble-Templated Hierarchical Porous ε-MnO 2 as a Superior Catalyst for Rechargeable Li-O 2 Batteries
journal, October 2014


Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries
journal, January 2018


Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes
journal, July 2014

  • Li, Xiaolin; Gu, Meng; Hu, Shenyang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5105

Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy
journal, March 2017

  • Luo, Langli; Liu, Bin; Song, Shidong
  • Nature Nanotechnology, Vol. 12, Issue 6
  • DOI: 10.1038/nnano.2017.27

Enabling Catalytic Oxidation of Li 2 O 2 at the Liquid-Solid Interface: The Evolution of an Aprotic Li-O 2 Battery
journal, January 2015


Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
journal, January 2011

  • Quartarone, Eliana; Mustarelli, Piercarlo
  • Chemical Society Reviews, Vol. 40, Issue 5
  • DOI: 10.1039/c0cs00081g

The Effect of Water on Quinone Redox Mediators in Nonaqueous Li-O 2 Batteries
journal, January 2018

  • Liu, Tao; Frith, James T.; Kim, Gunwoo
  • Journal of the American Chemical Society, Vol. 140, Issue 4
  • DOI: 10.1021/jacs.7b11007

Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery
journal, April 2015

  • Wei, Xiaoliang; Xu, Wu; Huang, Jinhua
  • Angewandte Chemie International Edition, Vol. 54, Issue 30
  • DOI: 10.1002/anie.201501443

A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator
journal, May 2017

  • Guo, Ziyang; Li, Chao; Liu, Jingyuan
  • Angewandte Chemie International Edition, Vol. 56, Issue 26
  • DOI: 10.1002/anie.201701290

    Works referencing / citing this record:

    Flexible 1D Batteries: Recent Progress and Prospects
    journal, July 2019


    Recent Progress on Catalysts for the Positive Electrode of Aprotic Lithium-Oxygen Batteries †
    journal, May 2019


    Flexible 1D Batteries: Recent Progress and Prospects
    journal, July 2019


    Recent Progress on Catalysts for the Positive Electrode of Aprotic Lithium-Oxygen Batteries †
    journal, May 2019


    Conjugated Cobalt Polyphthalocyanine as the Elastic and Reprocessable Catalyst for Flexible Li-CO 2 Batteries
    journal, November 2018


    Dual‐Phase Single‐Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries
    journal, March 2019


    Thick Electrode Batteries: Principles, Opportunities, and Challenges
    journal, July 2019

    • Kuang, Yudi; Chen, Chaoji; Kirsch, Dylan
    • Advanced Energy Materials, Vol. 9, Issue 33
    • DOI: 10.1002/aenm.201901457

    Understanding Rechargeable Li−O 2 Batteries via First‐Principles Computations
    journal, March 2019


    NiCo 2 S 4 Nanorod Arrays Supported on Carbon Textile as a Free-Standing Electrode for Stable and Long-Life Lithium-Oxygen Batteries
    journal, November 2018


    Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward
    journal, March 2019

    • Shen, Hangjia; Thomas, Tiju; Rasaki, Sefiu Abolaji
    • Electrochemical Energy Reviews, Vol. 2, Issue 2
    • DOI: 10.1007/s41918-019-00030-w

    Lithium-ion batteries: outlook on present, future, and hybridized technologies
    journal, January 2019

    • Kim, Taehoon; Song, Wentao; Son, Dae-Yong
    • Journal of Materials Chemistry A, Vol. 7, Issue 7
    • DOI: 10.1039/c8ta10513h

    Metal–organic framework derived Co–N-reduced graphene oxide as electrode materials for rechargeable Li–O 2 batteries
    journal, January 2019

    • Lin, Xiujing; Yang, Yang; Li, Zhuang
    • New Journal of Chemistry, Vol. 43, Issue 20
    • DOI: 10.1039/c9nj00508k

    Electrochemically induced highly ion conductive porous scaffolds to stabilize lithium deposition for lithium metal anodes
    journal, January 2019

    • Chen, Qiulin; Yang, Yifang; Zheng, Hongfei
    • Journal of Materials Chemistry A, Vol. 7, Issue 19
    • DOI: 10.1039/c9ta01834d

    Design strategies toward catalytic materials and cathode structures for emerging Li–CO 2 batteries
    journal, January 2019

    • Hu, Anjun; Shu, Chaozhu; Xu, Chenxi
    • Journal of Materials Chemistry A, Vol. 7, Issue 38
    • DOI: 10.1039/c9ta06506g

    Novel MoSi 2 catalysts featuring surface activation as highly efficient cathode materials for long-life Li–O 2 batteries
    journal, January 2020

    • Dang, Congcong; Wang, Yu; He, Biao
    • Journal of Materials Chemistry A, Vol. 8, Issue 1
    • DOI: 10.1039/c9ta10713d

    Three-Dimensional Nitrogen-Doped Hollow Carbon Fiber with a Micro-Scale Diameter as a Binder-Free Oxygen Electrode for Li-O 2 Batteries
    journal, January 2019

    • Lim, Katie Heeyum; Kweon, Heejun; Kim, Hansung
    • Journal of The Electrochemical Society, Vol. 166, Issue 14
    • DOI: 10.1149/2.1101914jes

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.