Simulated high-latitude soil thermal dynamics during the past 4 decades
Abstract
Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr-1. Most models show smaller increase in Ts with increasing depth. Air temperature (Tsub>a) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % ofmore »
- Authors:
-
more »
- Lab. de Glaciologie et Géophysique de l'Environnement (LGGE), Grenoble (France); Lab. des Sciences du Climat et de l'Environnement (LSCE), Gif-sur-Yvette (France)
- Lab. de Glaciologie et Géophysique de l'Environnement (LGGE), Grenoble (France)
- Lab. de Glaciologie et Géophysique de l'Environnement (LGGE), Grenoble (France); Irstea, Villeurbanne (France)
- Univ. of Alaska, Fairbanks, AK (United States)
- National Center for Atmospheric Research, Boulder, CO (United States)
- Met Office Hadley Centre, Exeter (United Kingdom)
- Univ. of Washington, Seattle, WA (United States)
- CNRM-GAME, Toulouse (France)
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
- Univ. of Victoria, BC (Canada)
- Beijing Normal Univ. (China); Alfred Wegener Inst. for Polar and Marine Research, Potsdam (Germany)
- Japan Agency for Marine-Earth Science and Technology, Yokohama (Japan)
- Lund Univ. (Sweden)
- Arizona State Univ., Tempe, AZ (United States)
- Beijing Normal Univ. (China)
- Japan Agency for Marine-Earth Science and Technology, Yokohama (Japan); National Inst. of Polar Research, Tokyo (Japan)
- Publication Date:
- Research Org.:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
- Sponsoring Org.:
- USDOE Office of Science (SC), Biological and Environmental Research (BER)
- OSTI Identifier:
- 1471001
- Grant/Contract Number:
- AC02-05CH11231
- Resource Type:
- Accepted Manuscript
- Journal Name:
- The Cryosphere (Online)
- Additional Journal Information:
- Journal Name: The Cryosphere (Online); Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 1994-0424
- Publisher:
- European Geosciences Union
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 58 GEOSCIENCES
Citation Formats
Peng, S., Ciais, P., Krinner, G., Wang, T., Gouttevin, I., McGuire, A. D., Lawrence, D., Burke, E., Chen, X., Decharme, B., Koven, C., MacDougall, A., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T. J., Delire, C., Hajima, T., Ji, D., Lettenmaier, D. P., Miller, P. A., Moore, J. C., Smith, B., and Sueyoshi, T. Simulated high-latitude soil thermal dynamics during the past 4 decades. United States: N. p., 2016.
Web. doi:10.5194/tc-10-179-2016.
Peng, S., Ciais, P., Krinner, G., Wang, T., Gouttevin, I., McGuire, A. D., Lawrence, D., Burke, E., Chen, X., Decharme, B., Koven, C., MacDougall, A., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T. J., Delire, C., Hajima, T., Ji, D., Lettenmaier, D. P., Miller, P. A., Moore, J. C., Smith, B., & Sueyoshi, T. Simulated high-latitude soil thermal dynamics during the past 4 decades. United States. https://doi.org/10.5194/tc-10-179-2016
Peng, S., Ciais, P., Krinner, G., Wang, T., Gouttevin, I., McGuire, A. D., Lawrence, D., Burke, E., Chen, X., Decharme, B., Koven, C., MacDougall, A., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T. J., Delire, C., Hajima, T., Ji, D., Lettenmaier, D. P., Miller, P. A., Moore, J. C., Smith, B., and Sueyoshi, T. Wed .
"Simulated high-latitude soil thermal dynamics during the past 4 decades". United States. https://doi.org/10.5194/tc-10-179-2016. https://www.osti.gov/servlets/purl/1471001.
@article{osti_1471001,
title = {Simulated high-latitude soil thermal dynamics during the past 4 decades},
author = {Peng, S. and Ciais, P. and Krinner, G. and Wang, T. and Gouttevin, I. and McGuire, A. D. and Lawrence, D. and Burke, E. and Chen, X. and Decharme, B. and Koven, C. and MacDougall, A. and Rinke, A. and Saito, K. and Zhang, W. and Alkama, R. and Bohn, T. J. and Delire, C. and Hajima, T. and Ji, D. and Lettenmaier, D. P. and Miller, P. A. and Moore, J. C. and Smith, B. and Sueyoshi, T.},
abstractNote = {Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr-1. Most models show smaller increase in Ts with increasing depth. Air temperature (Tsub>a) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 °C yr-1, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 °C yr-1), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R = -0.85, P = 0.003), but not with the initial total near-surface permafrost area (R = -0.30, P = 0.438). The sensitivity of the total boreal near-surface permafrost area to Ts at 1 m is estimated to be of -2.80 ± 0.67 million km2 °C-1. Finally, by using two long-term LWDR data sets and relationships between trends of LWDR and Ts across models, we infer an observation-constrained total boreal near-surface permafrost area decrease comprising between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr-1 from 1960 to 2000. This corresponds to 9–18 % degradation of the current permafrost area.},
doi = {10.5194/tc-10-179-2016},
journal = {The Cryosphere (Online)},
number = 1,
volume = 10,
place = {United States},
year = {2016},
month = {1}
}
Web of Science
Figures / Tables:

Works referenced in this record:
Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology
journal, January 2012
- Gouttevin, I.; Krinner, G.; Ciais, P.
- The Cryosphere, Vol. 6, Issue 2
Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle
journal, September 2008
- Schuur, Edward A. G.; Bockheim, James; Canadell, Josep G.
- BioScience, Vol. 58, Issue 8
The Common Land Model
journal, August 2003
- Dai, Yongjiu; Zeng, Xubin; Dickinson, Robert E.
- Bulletin of the American Meteorological Society, Vol. 84, Issue 8
Thermal state of permafrost in North America: a contribution to the international polar year
journal, April 2010
- Smith, S. L.; Romanovsky, V. E.; Lewkowicz, A. G.
- Permafrost and Periglacial Processes, Vol. 21, Issue 2
Estimating the near-surface permafrost-carbon feedback on global warming
journal, January 2012
- Schneider von Deimling, T.; Meinshausen, M.; Levermann, A.
- Biogeosciences, Vol. 9, Issue 2
The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data
journal, September 2014
- Weedon, Graham P.; Balsamo, Gianpaolo; Bellouin, Nicolas
- Water Resources Research, Vol. 50, Issue 9
Amount and timing of permafrost carbon release in response to climate warming: AMOUNT AND TIMING OF PERMAFROST CARBON RELEASE
journal, February 2011
- Schaefer, Kevin; Zhang, Tingjun; Bruhwiler, Lori
- Tellus B, Vol. 63, Issue 2
Significant contribution to climate warming from the permafrost carbon feedback
journal, September 2012
- MacDougall, Andrew H.; Avis, Christopher A.; Weaver, Andrew J.
- Nature Geoscience, Vol. 5, Issue 10
Incorporating organic soil into a global climate model
journal, June 2007
- Lawrence, David M.; Slater, Andrew G.
- Climate Dynamics, Vol. 30, Issue 2-3
Recent changes in climate and permafrost temperatures at forested and polar desert sites in northern Canada 1 This article is one of a series of papers published in this CJES Special Issue on the theme of Fundamental and applied research on permafrost in Canada .
journal, August 2012
- Smith, Sharon L.; Throop, Jennifer; Lewkowicz, Antoni G.
- Canadian Journal of Earth Sciences, Vol. 49, Issue 8
A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system: DVGM FOR COUPLED CLIMATE STUDIES
journal, February 2005
- Krinner, G.; Viovy, Nicolas; de Noblet-Ducoudré, Nathalie
- Global Biogeochemical Cycles, Vol. 19, Issue 1
Improved modeling of permafrost dynamics in a GCM land-surface scheme: MODELING PERMAFROST DYNAMICS IN ALASKA BY CLM3
journal, April 2007
- Nicolsky, D. J.; Romanovsky, V. E.; Alexeev, V. A.
- Geophysical Research Letters, Vol. 34, Issue 8
An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
journal, January 2012
- McGuire, A. D.; Christensen, T. R.; Hayes, D.
- Biogeosciences, Vol. 9, Issue 8
A retrospective analysis of pan Arctic permafrost using the JULES land surface model
journal, January 2013
- Burke, Eleanor J.; Dankers, Rutger; Jones, Chris D.
- Climate Dynamics, Vol. 41, Issue 3-4
Correction of Global Precipitation Products for Orographic Effects
journal, January 2006
- Adam, Jennifer C.; Clark, Elizabeth A.; Lettenmaier, Dennis P.
- Journal of Climate, Vol. 19, Issue 1
The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics
journal, January 2011
- Clark, D. B.; Mercado, L. M.; Sitch, S.
- Geoscientific Model Development, Vol. 4, Issue 3
Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century
journal, October 2011
- Weedon, G. P.; Gomes, S.; Viterbo, P.
- Journal of Hydrometeorology, Vol. 12, Issue 5
Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling
journal, July 2006
- Sheffield, Justin; Goteti, Gopi; Wood, Eric F.
- Journal of Climate, Vol. 19, Issue 13
Characteristics of the recent warming of permafrost in Alaska
journal, January 2007
- Osterkamp, T. E.
- Journal of Geophysical Research, Vol. 112, Issue F2
Observed soil temperature trends associated with climate change in Canada
journal, January 2011
- Qian, Budong; Gregorich, Edward G.; Gameda, Sam
- Journal of Geophysical Research, Vol. 116, Issue D2
Local evaluation of the Interaction between Soil Biosphere Atmosphere soil multilayer diffusion scheme using four pedotransfer functions
journal, January 2011
- Decharme, B.; Boone, A.; Delire, C.
- Journal of Geophysical Research, Vol. 116, Issue D20
Effects of bottom boundary placement on subsurface heat storage: Implications for climate model simulations
journal, January 2007
- Stevens, M. Bruce; Smerdon, Jason E.; González-Rouco, J. Fidel
- Geophysical Research Letters, Vol. 34, Issue 2
Derivation and analysis of a high-resolution estimate of global permafrost zonation
journal, January 2012
- Gruber, S.
- The Cryosphere, Vol. 6, Issue 1
An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost: HOW DEEP SHOULD THE CLM3 SOIL LAYER BE?
journal, May 2007
- Alexeev, V. A.; Nicolsky, D. J.; Romanovsky, V. E.
- Geophysical Research Letters, Vol. 34, Issue 9
On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model
journal, January 2009
- Koven, C.; Friedlingstein, P.; Ciais, P.
- Geophysical Research Letters, Vol. 36, Issue 21
Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: a synthesis
journal, April 2010
- Romanovsky, Vladimir E.; Smith, Sharon L.; Christiansen, Hanne H.
- Permafrost and Periglacial Processes, Vol. 21, Issue 2
Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space: Vegetation dynamics in ecosystem models
journal, November 2001
- Smith, Benjamin; Prentice, I. Colin; Sykes, Martin T.
- Global Ecology and Biogeography, Vol. 10, Issue 6
The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data
journal, January 2014
- Wei, Y.; Liu, S.; Huntzinger, D. N.
- Geoscientific Model Development, Vol. 7, Issue 6
Long-term CO2 production following permafrost thaw
journal, July 2013
- Elberling, Bo; Michelsen, Anders; Schädel, Christina
- Nature Climate Change, Vol. 3, Issue 10
Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014
- Hugelius, G.; Strauss, J.; Zubrzycki, S.
- Biogeosciences, Vol. 11, Issue 23
A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
journal, November 2015
- Koven, C. D.; Schuur, E. A. G.; Schädel, C.
- Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2054
Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations
journal, November 2010
- Rawlins, Michael A.; Steele, Michael; Holland, Marika M.
- Journal of Climate, Vol. 23, Issue 21
Diagnosing Present and Future Permafrost from Climate Models
journal, August 2013
- Slater, Andrew G.; Lawrence, David M.
- Journal of Climate, Vol. 26, Issue 15
Sensitivity of the carbon cycle in the Arctic to climate change
journal, November 2009
- McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.
- Ecological Monographs, Vol. 79, Issue 4
Past and recent changes in air and permafrost temperatures in eastern Siberia
journal, April 2007
- Romanovsky, V. E.; Sazonova, T. S.; Balobaev, V. T.
- Global and Planetary Change, Vol. 56, Issue 3-4
Recent trends from Canadian permafrost thermal monitoring network sites
journal, January 2005
- Smith, Sharon L.; Burgess, Margo M.; Riseborough, Dan
- Permafrost and Periglacial Processes, Vol. 16, Issue 1
Reconciling soil thermal and hydrological lower boundary conditions in land surface models: LOWER BOUNDARY CONDITIONS OF SOIL IN LSM
journal, July 2013
- Decharme, Bertrand; Martin, Eric; Faroux, Stéphanie
- Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 14
Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
journal, October 2013
- Schädel, Christina; Schuur, Edward A. G.; Bracho, Rosvel
- Global Change Biology, Vol. 20, Issue 2
Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming
journal, January 2008
- Khvorostyanov, D. V.; Ciais, P.; Krinner, G.
- Tellus B: Chemical and Physical Meteorology, Vol. 60, Issue 2
Assessment of model estimates of land-atmosphere CO 2 exchange across Northern Eurasia
journal, January 2015
- Rawlins, M. A.; McGuire, A. D.; Kimball, J. S.
- Biogeosciences, Vol. 12, Issue 14
Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011
- Koven, C. D.; Ringeval, B.; Friedlingstein, P.
- Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
On the influence of shrub height and expansion on northern high latitude climate
journal, January 2012
- Bonfils, C. J. W.; Phillips, T. J.; Lawrence, D. M.
- Environmental Research Letters, Vol. 7, Issue 1
The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes
journal, January 2011
- Best, M. J.; Pryor, M.; Clark, D. B.
- Geoscientific Model Development, Vol. 4, Issue 3
Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002
journal, January 2004
- Smith, Nicole V.
- Journal of Geophysical Research, Vol. 109, Issue D12
Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models
journal, March 2013
- Koven, Charles D.; Riley, William J.; Stern, Alex
- Journal of Climate, Vol. 26, Issue 6
Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland
journal, January 2013
- Bohn, T. J.; Podest, E.; Schroeder, R.
- Biogeosciences, Vol. 10, Issue 10
Reduction in areal extent of high-latitude wetlands in response to permafrost thaw
journal, June 2011
- Avis, Christopher A.; Weaver, Andrew J.; Meissner, Katrin J.
- Nature Geoscience, Vol. 4, Issue 7
Stomatal responses to increased CO2: implications from the plant to the global scale
journal, October 1995
- Field, C. B.; Jackson, R. B.; Mooney, H. A.
- Plant, Cell and Environment, Vol. 18, Issue 10
Effects of excess ground ice on projections of permafrost in a warming climate
journal, December 2014
- Lee, Hanna; Swenson, Sean C.; Slater, Andrew G.
- Environmental Research Letters, Vol. 9, Issue 12
An improved method of constructing a database of monthly climate observations and associated high-resolution grids
journal, January 2005
- Mitchell, Timothy D.; Jones, Philip D.
- International Journal of Climatology, Vol. 25, Issue 6
Methane emissions from permafrost thaw lakes limited by lake drainage
journal, May 2011
- van Huissteden, J.; Berrittella, C.; Parmentier, F. J. W.
- Nature Climate Change, Vol. 1, Issue 2
An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia
journal, May 2014
- Park, Hotaek; Sherstiukov, Artem B.; Fedorov, Alexander N.
- Environmental Research Letters, Vol. 9, Issue 6
Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1
journal, January 2014
- Ji, D.; Wang, L.; Feng, J.
- Geoscientific Model Development, Vol. 7, Issue 5
A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data
journal, January 2015
- Westermann, S.; Østby, T. I.; Gisnås, K.
- The Cryosphere, Vol. 9, Issue 3
Comparison and evaluation of gridded radiation products across northern Eurasia
journal, October 2009
- Troy, T. J.; Wood, E. F.
- Environmental Research Letters, Vol. 4, Issue 4
Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset: UPDATED HIGH-RESOLUTION GRIDS OF MONTHLY CLIMATIC OBSERVATIONS
journal, May 2013
- Harris, I.; Jones, P. D.; Osborn, T. J.
- International Journal of Climatology, Vol. 34, Issue 3
Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter
journal, January 2008
- Lawrence, David M.; Slater, Andrew G.; Romanovsky, Vladimir E.
- Journal of Geophysical Research, Vol. 113, Issue F2
MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments
journal, January 2011
- Watanabe, S.; Hajima, T.; Sudo, K.
- Geoscientific Model Development, Vol. 4, Issue 4
The WFDEI Meteorological Forcing Data
dataset, January 2018
- Weedon, Graham P.; Balsamo, G.; Bellouin, N.
- UCAR/NCAR - Research Data Archive
Works referencing / citing this record:
Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
journal, March 2018
- McGuire, A. David; Lawrence, David M.; Koven, Charles
- Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
Non-uniform seasonal warming regulates vegetation greening and atmospheric CO 2 amplification over northern lands
journal, November 2018
- Li, Zhao; Xia, Jianyang; Ahlström, Anders
- Environmental Research Letters, Vol. 13, Issue 12
Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange
journal, January 2019
- Bastos, Ana; Ciais, Philippe; Chevallier, Frédéric
- Atmospheric Chemistry and Physics, Vol. 19, Issue 19
ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation
journal, January 2018
- Guimberteau, Matthieu; Zhu, Dan; Maignan, Fabienne
- Geoscientific Model Development, Vol. 11, Issue 1
Effects of short-term variability of meteorological variables on soil temperature in permafrost regions
journal, January 2018
- Beer, Christian; Porada, Philipp; Ekici, Altug
- The Cryosphere, Vol. 12, Issue 2
The European mountain cryosphere: a review of its current state, trends, and future challenges
journal, January 2018
- Beniston, Martin; Farinotti, Daniel; Stoffel, Markus
- The Cryosphere, Vol. 12, Issue 2
Soil moisture and hydrology projections of the permafrost region – a model intercomparison
journal, January 2020
- Andresen, Christian G.; Lawrence, David M.; Wilson, Cathy J.
- The Cryosphere, Vol. 14, Issue 2
Effects of short-term variability of meteorological variables on soil temperature in permafrost regions
text, January 2018
- Beer, Christian; Porada, Philipp; Ekici, Sait Altug
- Copernicus Publications
Figures / Tables found in this record: