skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulated high-latitude soil thermal dynamics during the past 4 decades

Abstract

Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr-1. Most models show smaller increase in Ts with increasing depth. Air temperature (Tsub>a) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % ofmore » the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 °C yr-1, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 °C yr-1), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R = -0.85, P = 0.003), but not with the initial total near-surface permafrost area (R = -0.30, P = 0.438). The sensitivity of the total boreal near-surface permafrost area to Ts at 1 m is estimated to be of -2.80 ± 0.67 million km2 °C-1. Finally, by using two long-term LWDR data sets and relationships between trends of LWDR and Ts across models, we infer an observation-constrained total boreal near-surface permafrost area decrease comprising between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr-1 from 1960 to 2000. This corresponds to 9–18 % degradation of the current permafrost area.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [1]; ORCiD logo [3];  [4];  [5]; ORCiD logo [6]; ORCiD logo [7];  [8]; ORCiD logo [9];  [10];  [11];  [12]; ORCiD logo [13];  [8];  [14];  [8];  [12];  [15] more »;  [7];  [13];  [15];  [13];  [16] « less
  1. Lab. de Glaciologie et Géophysique de l'Environnement (LGGE), Grenoble (France); Lab. des Sciences du Climat et de l'Environnement (LSCE), Gif-sur-Yvette (France)
  2. Lab. de Glaciologie et Géophysique de l'Environnement (LGGE), Grenoble (France)
  3. Lab. de Glaciologie et Géophysique de l'Environnement (LGGE), Grenoble (France); Irstea, Villeurbanne (France)
  4. Univ. of Alaska, Fairbanks, AK (United States)
  5. National Center for Atmospheric Research, Boulder, CO (United States)
  6. Met Office Hadley Centre, Exeter (United Kingdom)
  7. Univ. of Washington, Seattle, WA (United States)
  8. CNRM-GAME, Toulouse (France)
  9. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  10. Univ. of Victoria, BC (Canada)
  11. Beijing Normal Univ. (China); Alfred Wegener Inst. for Polar and Marine Research, Potsdam (Germany)
  12. Japan Agency for Marine-Earth Science and Technology, Yokohama (Japan)
  13. Lund Univ. (Sweden)
  14. Arizona State Univ., Tempe, AZ (United States)
  15. Beijing Normal Univ. (China)
  16. Japan Agency for Marine-Earth Science and Technology, Yokohama (Japan); National Inst. of Polar Research, Tokyo (Japan)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1471001
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
The Cryosphere (Online)
Additional Journal Information:
Journal Name: The Cryosphere (Online); Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 1994-0424
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES

Citation Formats

Peng, S., Ciais, P., Krinner, G., Wang, T., Gouttevin, I., McGuire, A. D., Lawrence, D., Burke, E., Chen, X., Decharme, B., Koven, C., MacDougall, A., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T. J., Delire, C., Hajima, T., Ji, D., Lettenmaier, D. P., Miller, P. A., Moore, J. C., Smith, B., and Sueyoshi, T. Simulated high-latitude soil thermal dynamics during the past 4 decades. United States: N. p., 2016. Web. doi:10.5194/tc-10-179-2016.
Peng, S., Ciais, P., Krinner, G., Wang, T., Gouttevin, I., McGuire, A. D., Lawrence, D., Burke, E., Chen, X., Decharme, B., Koven, C., MacDougall, A., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T. J., Delire, C., Hajima, T., Ji, D., Lettenmaier, D. P., Miller, P. A., Moore, J. C., Smith, B., & Sueyoshi, T. Simulated high-latitude soil thermal dynamics during the past 4 decades. United States. doi:10.5194/tc-10-179-2016.
Peng, S., Ciais, P., Krinner, G., Wang, T., Gouttevin, I., McGuire, A. D., Lawrence, D., Burke, E., Chen, X., Decharme, B., Koven, C., MacDougall, A., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T. J., Delire, C., Hajima, T., Ji, D., Lettenmaier, D. P., Miller, P. A., Moore, J. C., Smith, B., and Sueyoshi, T. Wed . "Simulated high-latitude soil thermal dynamics during the past 4 decades". United States. doi:10.5194/tc-10-179-2016. https://www.osti.gov/servlets/purl/1471001.
@article{osti_1471001,
title = {Simulated high-latitude soil thermal dynamics during the past 4 decades},
author = {Peng, S. and Ciais, P. and Krinner, G. and Wang, T. and Gouttevin, I. and McGuire, A. D. and Lawrence, D. and Burke, E. and Chen, X. and Decharme, B. and Koven, C. and MacDougall, A. and Rinke, A. and Saito, K. and Zhang, W. and Alkama, R. and Bohn, T. J. and Delire, C. and Hajima, T. and Ji, D. and Lettenmaier, D. P. and Miller, P. A. and Moore, J. C. and Smith, B. and Sueyoshi, T.},
abstractNote = {Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr-1. Most models show smaller increase in Ts with increasing depth. Air temperature (Tsub>a) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 °C yr-1, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 °C yr-1), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R = -0.85, P = 0.003), but not with the initial total near-surface permafrost area (R = -0.30, P = 0.438). The sensitivity of the total boreal near-surface permafrost area to Ts at 1 m is estimated to be of -2.80 ± 0.67 million km2 °C-1. Finally, by using two long-term LWDR data sets and relationships between trends of LWDR and Ts across models, we infer an observation-constrained total boreal near-surface permafrost area decrease comprising between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr-1 from 1960 to 2000. This corresponds to 9–18 % degradation of the current permafrost area.},
doi = {10.5194/tc-10-179-2016},
journal = {The Cryosphere (Online)},
number = 1,
volume = 10,
place = {United States},
year = {2016},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Soil depth for soil thermal dynamics and climate forcing used in each model.

Save / Share:

Works referenced in this record:

Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology
journal, January 2012


Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle
journal, September 2008

  • Schuur, Edward A. G.; Bockheim, James; Canadell, Josep G.
  • BioScience, Vol. 58, Issue 8
  • DOI: 10.1641/B580807

The Common Land Model
journal, August 2003

  • Dai, Yongjiu; Zeng, Xubin; Dickinson, Robert E.
  • Bulletin of the American Meteorological Society, Vol. 84, Issue 8
  • DOI: 10.1175/BAMS-84-8-1013

Thermal state of permafrost in North America: a contribution to the international polar year
journal, April 2010

  • Smith, S. L.; Romanovsky, V. E.; Lewkowicz, A. G.
  • Permafrost and Periglacial Processes, Vol. 21, Issue 2
  • DOI: 10.1002/ppp.690

Estimating the near-surface permafrost-carbon feedback on global warming
journal, January 2012

  • Schneider von Deimling, T.; Meinshausen, M.; Levermann, A.
  • Biogeosciences, Vol. 9, Issue 2
  • DOI: 10.5194/bg-9-649-2012

The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data
journal, September 2014

  • Weedon, Graham P.; Balsamo, Gianpaolo; Bellouin, Nicolas
  • Water Resources Research, Vol. 50, Issue 9
  • DOI: 10.1002/2014WR015638

Amount and timing of permafrost carbon release in response to climate warming: AMOUNT AND TIMING OF PERMAFROST CARBON RELEASE
journal, February 2011


Significant contribution to climate warming from the permafrost carbon feedback
journal, September 2012

  • MacDougall, Andrew H.; Avis, Christopher A.; Weaver, Andrew J.
  • Nature Geoscience, Vol. 5, Issue 10
  • DOI: 10.1038/ngeo1573

Incorporating organic soil into a global climate model
journal, June 2007


A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system: DVGM FOR COUPLED CLIMATE STUDIES
journal, February 2005

  • Krinner, G.; Viovy, Nicolas; de Noblet-Ducoudré, Nathalie
  • Global Biogeochemical Cycles, Vol. 19, Issue 1
  • DOI: 10.1029/2003GB002199

Improved modeling of permafrost dynamics in a GCM land-surface scheme: MODELING PERMAFROST DYNAMICS IN ALASKA BY CLM3
journal, April 2007

  • Nicolsky, D. J.; Romanovsky, V. E.; Alexeev, V. A.
  • Geophysical Research Letters, Vol. 34, Issue 8
  • DOI: 10.1029/2007GL029525

An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
journal, January 2012


A retrospective analysis of pan Arctic permafrost using the JULES land surface model
journal, January 2013


Correction of Global Precipitation Products for Orographic Effects
journal, January 2006

  • Adam, Jennifer C.; Clark, Elizabeth A.; Lettenmaier, Dennis P.
  • Journal of Climate, Vol. 19, Issue 1
  • DOI: 10.1175/JCLI3604.1

The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics
journal, January 2011

  • Clark, D. B.; Mercado, L. M.; Sitch, S.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-701-2011

Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century
journal, October 2011

  • Weedon, G. P.; Gomes, S.; Viterbo, P.
  • Journal of Hydrometeorology, Vol. 12, Issue 5
  • DOI: 10.1175/2011JHM1369.1

Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling
journal, July 2006

  • Sheffield, Justin; Goteti, Gopi; Wood, Eric F.
  • Journal of Climate, Vol. 19, Issue 13
  • DOI: 10.1175/JCLI3790.1

Characteristics of the recent warming of permafrost in Alaska
journal, January 2007


Observed soil temperature trends associated with climate change in Canada
journal, January 2011

  • Qian, Budong; Gregorich, Edward G.; Gameda, Sam
  • Journal of Geophysical Research, Vol. 116, Issue D2
  • DOI: 10.1029/2010JD015012

Local evaluation of the Interaction between Soil Biosphere Atmosphere soil multilayer diffusion scheme using four pedotransfer functions
journal, January 2011

  • Decharme, B.; Boone, A.; Delire, C.
  • Journal of Geophysical Research, Vol. 116, Issue D20
  • DOI: 10.1029/2011JD016002

Effects of bottom boundary placement on subsurface heat storage: Implications for climate model simulations
journal, January 2007

  • Stevens, M. Bruce; Smerdon, Jason E.; González-Rouco, J. Fidel
  • Geophysical Research Letters, Vol. 34, Issue 2
  • DOI: 10.1029/2006GL028546

Derivation and analysis of a high-resolution estimate of global permafrost zonation
journal, January 2012


An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost: HOW DEEP SHOULD THE CLM3 SOIL LAYER BE?
journal, May 2007

  • Alexeev, V. A.; Nicolsky, D. J.; Romanovsky, V. E.
  • Geophysical Research Letters, Vol. 34, Issue 9
  • DOI: 10.1029/2007GL029536

On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model
journal, January 2009

  • Koven, C.; Friedlingstein, P.; Ciais, P.
  • Geophysical Research Letters, Vol. 36, Issue 21
  • DOI: 10.1029/2009GL040150

Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: a synthesis
journal, April 2010

  • Romanovsky, Vladimir E.; Smith, Sharon L.; Christiansen, Hanne H.
  • Permafrost and Periglacial Processes, Vol. 21, Issue 2
  • DOI: 10.1002/ppp.689

The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data
journal, January 2014

  • Wei, Y.; Liu, S.; Huntzinger, D. N.
  • Geoscientific Model Development, Vol. 7, Issue 6
  • DOI: 10.5194/gmd-7-2875-2014

Long-term CO2 production following permafrost thaw
journal, July 2013

  • Elberling, Bo; Michelsen, Anders; Schädel, Christina
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate1955

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
journal, November 2015

  • Koven, C. D.; Schuur, E. A. G.; Schädel, C.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2054
  • DOI: 10.1098/rsta.2014.0423

Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations
journal, November 2010

  • Rawlins, Michael A.; Steele, Michael; Holland, Marika M.
  • Journal of Climate, Vol. 23, Issue 21
  • DOI: 10.1175/2010JCLI3421.1

Diagnosing Present and Future Permafrost from Climate Models
journal, August 2013


Sensitivity of the carbon cycle in the Arctic to climate change
journal, November 2009

  • McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.
  • Ecological Monographs, Vol. 79, Issue 4
  • DOI: 10.1890/08-2025.1

Past and recent changes in air and permafrost temperatures in eastern Siberia
journal, April 2007


Recent trends from Canadian permafrost thermal monitoring network sites
journal, January 2005

  • Smith, Sharon L.; Burgess, Margo M.; Riseborough, Dan
  • Permafrost and Periglacial Processes, Vol. 16, Issue 1
  • DOI: 10.1002/ppp.511

Reconciling soil thermal and hydrological lower boundary conditions in land surface models: LOWER BOUNDARY CONDITIONS OF SOIL IN LSM
journal, July 2013

  • Decharme, Bertrand; Martin, Eric; Faroux, Stéphanie
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 14
  • DOI: 10.1002/jgrd.50631

Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
journal, October 2013

  • Schädel, Christina; Schuur, Edward A. G.; Bracho, Rosvel
  • Global Change Biology, Vol. 20, Issue 2
  • DOI: 10.1111/gcb.12417

Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming
journal, January 2008


Assessment of model estimates of land-atmosphere CO 2 exchange across Northern Eurasia
journal, January 2015


Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011

  • Koven, C. D.; Ringeval, B.; Friedlingstein, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
  • DOI: 10.1073/pnas.1103910108

On the influence of shrub height and expansion on northern high latitude climate
journal, January 2012


The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes
journal, January 2011

  • Best, M. J.; Pryor, M.; Clark, D. B.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-677-2011

Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002
journal, January 2004


Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models
journal, March 2013


Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland
journal, January 2013


Reduction in areal extent of high-latitude wetlands in response to permafrost thaw
journal, June 2011

  • Avis, Christopher A.; Weaver, Andrew J.; Meissner, Katrin J.
  • Nature Geoscience, Vol. 4, Issue 7
  • DOI: 10.1038/ngeo1160

Stomatal responses to increased CO2: implications from the plant to the global scale
journal, October 1995


Effects of excess ground ice on projections of permafrost in a warming climate
journal, December 2014


An improved method of constructing a database of monthly climate observations and associated high-resolution grids
journal, January 2005

  • Mitchell, Timothy D.; Jones, Philip D.
  • International Journal of Climatology, Vol. 25, Issue 6
  • DOI: 10.1002/joc.1181

Methane emissions from permafrost thaw lakes limited by lake drainage
journal, May 2011

  • van Huissteden, J.; Berrittella, C.; Parmentier, F. J. W.
  • Nature Climate Change, Vol. 1, Issue 2
  • DOI: 10.1038/nclimate1101

An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia
journal, May 2014

  • Park, Hotaek; Sherstiukov, Artem B.; Fedorov, Alexander N.
  • Environmental Research Letters, Vol. 9, Issue 6
  • DOI: 10.1088/1748-9326/9/6/064026

Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1
journal, January 2014


A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data
journal, January 2015


Comparison and evaluation of gridded radiation products across northern Eurasia
journal, October 2009


Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset: UPDATED HIGH-RESOLUTION GRIDS OF MONTHLY CLIMATIC OBSERVATIONS
journal, May 2013

  • Harris, I.; Jones, P. D.; Osborn, T. J.
  • International Journal of Climatology, Vol. 34, Issue 3
  • DOI: 10.1002/joc.3711

Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter
journal, January 2008

  • Lawrence, David M.; Slater, Andrew G.; Romanovsky, Vladimir E.
  • Journal of Geophysical Research, Vol. 113, Issue F2
  • DOI: 10.1029/2007JF000883

MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments
journal, January 2011

  • Watanabe, S.; Hajima, T.; Sudo, K.
  • Geoscientific Model Development, Vol. 4, Issue 4
  • DOI: 10.5194/gmd-4-845-2011

    Works referencing / citing this record:

    Effects of short-term variability of meteorological variables on soil temperature in permafrost regions
    journal, January 2018


    ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation
    journal, January 2018

    • Guimberteau, Matthieu; Zhu, Dan; Maignan, Fabienne
    • Geoscientific Model Development, Vol. 11, Issue 1
    • DOI: 10.5194/gmd-11-121-2018

    ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation
    journal, January 2018

    • Guimberteau, Matthieu; Zhu, Dan; Maignan, Fabienne
    • Geoscientific Model Development, Vol. 11, Issue 1
    • DOI: 10.5194/gmd-11-121-2018

    Effects of short-term variability of meteorological variables on soil temperature in permafrost regions
    journal, January 2018