DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vertically Aligned and Continuous Nanoscale Ceramic–Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity

Abstract

Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic–polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic–polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li+ transport along the ceramic–polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10–3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10–4 S/cm at the electrode level. In conclusion, the vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li–Li cells to be cycled at a small polarization without Li dendrite penetration.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]
  1. Stanford Univ., Stanford, CA (United States); Univ. of Electronic Science and Technology of China, Sichuan (People's Republic of China)
  2. Stanford Univ., Stanford, CA (United States)
  3. Univ. of Electronic Science and Technology of China, Sichuan (People's Republic of China)
  4. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1470937
Grant/Contract Number:  
AC02-76SF00515; NCET-12-0098; 51472044
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 18; Journal Issue: 6; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ceramic−polymer interfaces; composite solid polymer electrolytes; ionic conductivity; Lithium batteries; vertically aligned nanostructures

Citation Formats

Zhang, Xiaokun, Xie, Jin, Shi, Feifei, Lin, Dingchang, Liu, Yayuan, Liu, Wei, Pei, Allen, Gong, Yongji, Wang, Hongxia, Liu, Kai, Xiang, Yong, and Cui, Yi. Vertically Aligned and Continuous Nanoscale Ceramic–Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity. United States: N. p., 2018. Web. doi:10.1021/acs.nanolett.8b01111.
Zhang, Xiaokun, Xie, Jin, Shi, Feifei, Lin, Dingchang, Liu, Yayuan, Liu, Wei, Pei, Allen, Gong, Yongji, Wang, Hongxia, Liu, Kai, Xiang, Yong, & Cui, Yi. Vertically Aligned and Continuous Nanoscale Ceramic–Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity. United States. https://doi.org/10.1021/acs.nanolett.8b01111
Zhang, Xiaokun, Xie, Jin, Shi, Feifei, Lin, Dingchang, Liu, Yayuan, Liu, Wei, Pei, Allen, Gong, Yongji, Wang, Hongxia, Liu, Kai, Xiang, Yong, and Cui, Yi. Fri . "Vertically Aligned and Continuous Nanoscale Ceramic–Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity". United States. https://doi.org/10.1021/acs.nanolett.8b01111. https://www.osti.gov/servlets/purl/1470937.
@article{osti_1470937,
title = {Vertically Aligned and Continuous Nanoscale Ceramic–Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity},
author = {Zhang, Xiaokun and Xie, Jin and Shi, Feifei and Lin, Dingchang and Liu, Yayuan and Liu, Wei and Pei, Allen and Gong, Yongji and Wang, Hongxia and Liu, Kai and Xiang, Yong and Cui, Yi},
abstractNote = {Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic–polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic–polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li+ transport along the ceramic–polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10–3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10–4 S/cm at the electrode level. In conclusion, the vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li–Li cells to be cycled at a small polarization without Li dendrite penetration.},
doi = {10.1021/acs.nanolett.8b01111},
journal = {Nano Letters},
number = 6,
volume = 18,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Materials Challenges and Opportunities of Lithium Ion Batteries
journal, January 2011

  • Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 3
  • DOI: 10.1021/jz1015422

Prospective materials and applications for Li secondary batteries
journal, January 2011

  • Jeong, Goojin; Kim, Young-Ugk; Kim, Hansu
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c0ee00831a

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Polymer Electrolytes
journal, July 2013


Polymer Electrolytes for Lithium-Ion Batteries
journal, April 1998


An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
journal, January 2011

  • Quartarone, Eliana; Mustarelli, Piercarlo
  • Chemical Society Reviews, Vol. 40, Issue 5
  • DOI: 10.1039/c0cs00081g

High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes
journal, October 2017

  • Zhao, Chen-Zi; Zhang, Xue-Qiang; Cheng, Xin-Bing
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 42
  • DOI: 10.1073/pnas.1708489114

Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode
journal, May 2017


Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries
journal, March 2016

  • Ma, Cheng; Cheng, Yongqiang; Chen, Kai
  • Advanced Energy Materials, Vol. 6, Issue 11
  • DOI: 10.1002/aenm.201600053

Highly Conductive Li Garnets by a Multielement Doping Strategy
journal, March 2015


A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Exceptionally High Ionic Conductivity in Na 3 P 0.62 As 0.38 S 4 with Improved Moisture Stability for Solid-State Sodium-Ion Batteries
journal, February 2017

  • Yu, Zhaoxin; Shang, Shun-Li; Seo, Joo-Hwan
  • Advanced Materials, Vol. 29, Issue 16
  • DOI: 10.1002/adma.201605561

Composite electrolytes based on low molecular weight polyglycols
journal, November 2000


Wide-Temperature Electrolytes for Lithium-Ion Batteries
journal, May 2017

  • Li, Qiuyan; Jiao, Shuhong; Luo, Langli
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 22
  • DOI: 10.1021/acsami.7b04099

Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries
journal, January 2017


25th Anniversary Article: Polymer-Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage
journal, December 2013

  • Srivastava, Samanvaya; Schaefer, Jennifer L.; Yang, Zichao
  • Advanced Materials, Vol. 26, Issue 2
  • DOI: 10.1002/adma.201303070

Review on composite polymer electrolytes for lithium batteries
journal, July 2006


Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers
journal, March 2015


Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

New polymer electrolyte nanocomposites: Melt intercalation of poly(ethylene oxide) in mica-type silicates
journal, February 1995

  • Vaia, Richard A.; Vasudevan, S.; Krawiec, Wlodzimierz
  • Advanced Materials, Vol. 7, Issue 2
  • DOI: 10.1002/adma.19950070210

On the origin of conductivity enhancement in polymer-ceramic composite electrolytes
journal, June 2001


Composite polyether based solid electrolytes
journal, October 1995


Composite polyether electrolytes with Lewis acid type additives
journal, March 2001


Understanding of Effects of Nano-Al[sub 2]O[sub 3] Particles on Ionic Conductivity of Composite Polymer Electrolytes
journal, January 2003

  • Wang, Zhaoxiang; Huang, Xuejie; Chen, Liquan
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 11
  • DOI: 10.1149/1.1615352

Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes
journal, May 2001


Molecular dynamics simulation of the effect of adding an Al2O3 nanoparticle to PEO–LiCl/LiBr/LiI systems
journal, November 2001

  • Kasemägi, Heiki; Klintenberg, Mattias; Aabloo, Alvo
  • Journal of Materials Chemistry, Vol. 11, Issue 12
  • DOI: 10.1039/b107345c

TiO2 nano-particles in polymer electrolytes: surface interactions
journal, May 2004


Effect of Nanoconfinement on Polymer Dynamics: Surface Layers and Interphases
journal, March 2013


Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
journal, June 2016

  • Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1600422113

Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires
journal, April 2017


Tailored Polymer-Based Nanofibers and Nanotubes by Means of Different Infiltration Methods into Alumina Nanopores
journal, January 2009

  • Martín, Jaime; Mijangos, Carmen
  • Langmuir, Vol. 25, Issue 2
  • DOI: 10.1021/la803127w

One-dimensional magnetopolymeric nanostructures with tailored sizes
journal, March 2008


Atomic Layer Deposition of Stable LiAlF 4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling
journal, July 2017


Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries
journal, January 2016

  • Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19892

Grain boundary complexions
journal, January 2014


Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2
journal, June 2003


Effects of inhomogeneity on ionic conductivity and relaxations in PEO and PEO–salt complexes
journal, February 2003


Conductivity and FTIR studies on PEO–LiX [X: CF3SO3−, SO42−] polymer electrolytes
journal, February 2008

  • Ramesh, S.; Yuen, Tai Fung; Shen, Chia Jun
  • Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 69, Issue 2
  • DOI: 10.1016/j.saa.2007.05.029

ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends
journal, August 2010

  • Sim, L. H.; Gan, S. N.; Chan, C. H.
  • Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 76, Issue 3-4
  • DOI: 10.1016/j.saa.2009.09.031

Infrared and Raman study of the PEO-LiTFSI polymer electrolyte
journal, April 1998


FTIR characterization of PEO + LiN(CF3SO2)2 electrolytes
journal, May 1996

  • Wen, S. J.; Richardson, T. J.; Ghantous, D. I.
  • Journal of Electroanalytical Chemistry, Vol. 408, Issue 1-2
  • DOI: 10.1016/0022-0728(96)04536-6

Homogeneous crystallization and local dynamics of poly(ethylene oxide) (PEO) confined to nanoporous alumina
journal, January 2013

  • Suzuki, Yasuhito; Duran, Hatice; Steinhart, Martin
  • Soft Matter, Vol. 9, Issue 9
  • DOI: 10.1039/c2sm27618f

Supported high surface AlF3: a very strong solid Lewis acid for catalytic applications
journal, January 2008

  • Eltanany, Gehan; Rüdiger, Stephan; Kemnitz, Erhard
  • Journal of Materials Chemistry, Vol. 18, Issue 19
  • DOI: 10.1039/b718989c

Aluminium fluoride – the strongest solid Lewis acid: structure and reactivity
journal, January 2017

  • Krahl, Thoralf; Kemnitz, Erhard
  • Catalysis Science & Technology, Vol. 7, Issue 4
  • DOI: 10.1039/C6CY02369J

Functioning Mechanism of AlF 3 Coating on the Li- and Mn-Rich Cathode Materials
journal, November 2014

  • Zheng, Jianming; Gu, Meng; Xiao, Jie
  • Chemistry of Materials, Vol. 26, Issue 22
  • DOI: 10.1021/cm502071h

Manipulating Crystal Orientation of Poly(ethylene oxide) by Nanopores
journal, February 2013

  • Guan, Yu; Liu, Guoming; Gao, Peiyuan
  • ACS Macro Letters, Vol. 2, Issue 3
  • DOI: 10.1021/mz300592v

The phase transition behavior of poly(butylene adipate) in the nanoporous anodic alumina oxide
journal, January 2016

  • Mi, Ce; Zhou, Jiandong; Ren, Zhongjie
  • Polymer Chemistry, Vol. 7, Issue 2
  • DOI: 10.1039/C5PY01532D

Hydrodynamic radius of polyethylene glycol in solution obtained by dynamic light scattering
journal, April 2010


Poly(ethylene glycol)s in Semidilute Regime: Radius of Gyration in the Bulk and Partitioning into a Nanopore
journal, March 2017


Conformational characteristics of poly(ethylene oxide) (PEO) in methanol
journal, June 2007


Asymptotic behavior and long-range interactions in aqueous solutions of poly(ethylene oxide)
journal, October 1991


Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes
journal, January 2017

  • Tu, Zhengyuan; Zachman, Michael J.; Choudhury, Snehashis
  • Advanced Energy Materials, Vol. 7, Issue 8
  • DOI: 10.1002/aenm.201602367

A Dendrite-Free Lithium Metal Battery Model Based on Nanoporous Polymer/Ceramic Composite Electrolytes and High-Energy Electrodes
journal, February 2015


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries
journal, September 2013

  • Tu, Zhengyuan; Kambe, Yu; Lu, Yingying
  • Advanced Energy Materials, Vol. 4, Issue 2, Article No. 1300654
  • DOI: 10.1002/aenm.201300654

Viscoelectric Effects in Nanochannel Electrokinetics
journal, September 2017

  • Hsu, Wei-Lun; Harvie, Dalton J. E.; Davidson, Malcolm R.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 37
  • DOI: 10.1021/acs.jpcc.7b06798

Works referencing / citing this record:

A polyoxometalate-based polymer electrolyte with an improved electrode interface and ion conductivity for high-safety all-solid-state batteries
journal, January 2019

  • Yuan, Xiangfei; Sun, Cui; Duan, Jia-Ning
  • Journal of Materials Chemistry A, Vol. 7, Issue 26
  • DOI: 10.1039/c9ta04714j

A solid-state dendrite-free lithium-metal battery with improved electrode interphase and ion conductivity enhanced by a bifunctional solid plasticizer
journal, January 2019

  • Peng, Jun; Wu, Li-Na; Lin, Jin-Xia
  • Journal of Materials Chemistry A, Vol. 7, Issue 33
  • DOI: 10.1039/c9ta07165b

Viscoelastic and Nonflammable Interface Design–Enabled Dendrite‐Free and Safe Solid Lithium Metal Batteries
journal, February 2019

  • Ma, Qiang; Zeng, Xian‐Xiang; Yue, Junpei
  • Advanced Energy Materials, Vol. 9, Issue 13
  • DOI: 10.1002/aenm.201803854

Electrolyte selection for supercapacitive devices: a critical review
journal, January 2019

  • Pal, Bhupender; Yang, Shengyuan; Ramesh, Subramaniam
  • Nanoscale Advances, Vol. 1, Issue 10
  • DOI: 10.1039/c9na00374f

Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode
journal, January 2019

  • Deng, Wei; Liang, Shanshan; Zhou, Xufeng
  • Journal of Materials Chemistry A, Vol. 7, Issue 11
  • DOI: 10.1039/c9ta00143c

g-C 3 N 4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability
journal, January 2019

  • Sun, Zongjie; Li, Yuhan; Zhang, Shuyang
  • Journal of Materials Chemistry A, Vol. 7, Issue 18
  • DOI: 10.1039/c9ta00634f

High‐Performance Solid Polymer Electrolytes Filled with Vertically Aligned 2D Materials
journal, February 2019

  • Tang, Wenjing; Tang, Shan; Guan, Xuze
  • Advanced Functional Materials, Vol. 29, Issue 16
  • DOI: 10.1002/adfm.201900648

Enhanced Surface Interactions Enable Fast Li + Conduction in Oxide/Polymer Composite Electrolyte
journal, January 2020


Recent Progress in Organic–Inorganic Composite Solid Electrolytes for All‐Solid‐State Lithium Batteries
journal, November 2019

  • Zhang, Dechao; Xu, Xijun; Qin, Yanlin
  • Chemistry – A European Journal, Vol. 26, Issue 8
  • DOI: 10.1002/chem.201904461

MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries
journal, January 2019

  • Wu, Jian-Fang; Guo, Xin
  • Journal of Materials Chemistry A, Vol. 7, Issue 6
  • DOI: 10.1039/c8ta10124h

Li + ‐Containing, Continuous Silica Nanofibers for High Li + Conductivity in Composite Polymer Electrolyte
journal, September 2019


Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxy–amine reaction for high-performance all-solid-state lithium-ion batteries
journal, January 2019

  • Zuo, Cai; Yang, Mengling; Wang, Zhijun
  • Journal of Materials Chemistry A, Vol. 7, Issue 32
  • DOI: 10.1039/c9ta05028k

Enhanced Surface Interactions Enable Fast Li + Conduction in Oxide/Polymer Composite Electrolyte
journal, January 2020

  • Wu, Nan; Chien, Po‐Hsiu; Qian, Yumin
  • Angewandte Chemie International Edition, Vol. 59, Issue 10
  • DOI: 10.1002/anie.201914478