DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Redox-Active vs Redox-Innocent: A Comparison of Uranium Complexes Containing Diamine Ligands

Abstract

Here uranium complexes (MesDAE)2U(THF) (1-DAE) and Cp2U(MesDAE) (2-DAE) (MesDAE = [ArN-CH2CH2-NAr]; Ar = 2,4,6-trimethylphenyl (Mes)), bearing redox-innocent diamide ligands, have been synthesized and characterized for a full comparison with previously published, redox-active diimine complexes, (MesDABMe)2U(THF) (1-DAB) and Cp2U(MesDABMe) (2-DAB) (MesDABMe = [ArN=C(Me)C(Me)=NAr]; Ar = Mes). These redox-innocent analogues maintain an analogous steric environment to their redox-active ligand counterparts to facilitate a study aimed at determining the differing electronic behavior around the uranium center. Structural analysis by X-ray crystallography showed 1-DAE and 2-DAE have a structural environment very similar to 1-DAB and 2-DAB, respectively. The main difference occurs with coordination of the ene-backbone to the uranium center in the latter species. Electronic absorption spectroscopy reveals these new DAE complexes are nearly identical to each other. X-ray absorption spectroscopy suggests all four species contain +4 uranium ions. The data also indicates that there is an electronic difference between the bis(diamide)-THF uranium complexes as opposed to those that only contain one diamide and two cyclopentadienyl rings. Finally, magnetic measurements reveal that all complexes display temperature-dependent behavior consistent with uranium(IV) ions that do not include ligand radicals. Overall, this study determines that there is no significant bonding difference between the redox-innocent and redox-active ligandmore » frameworks on uranium. Furthermore, there are no data to suggest covalent bonding character using the latter ligand framework on uranium, despite what is known for transition metals.« less

Authors:
 [1];  [2]; ORCiD logo [2]; ORCiD logo [3];  [3]; ORCiD logo [3];  [4];  [3];  [1];  [5]; ORCiD logo [1]
  1. Purdue Univ., West Lafayette, IN (United States)
  2. Univ. of Pennsylvania, Philadelphia, PA (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Stanford Univ., Stanford, CA (United States)
  5. Purdue Univ., West Lafayette, IN (United States); Youngstown State Univ., Youngstown, OH (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1470936
Grant/Contract Number:  
AC02-76SF00515; SC0008479; SC0017259
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 57; Journal Issue: 11; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Pattenaude, Scott A., Mullane, Kimberly C., Schelter, Eric J., Ferrier, Maryline G., Stein, Benjamin W., Bone, Sharon E., Lezama Pacheco, Juan S., Kozimor, Stosh A., Fanwick, Phillip E., Zeller, Matthias, and Bart, Suzanne C. Redox-Active vs Redox-Innocent: A Comparison of Uranium Complexes Containing Diamine Ligands. United States: N. p., 2018. Web. doi:10.1021/acs.inorgchem.8b00663.
Pattenaude, Scott A., Mullane, Kimberly C., Schelter, Eric J., Ferrier, Maryline G., Stein, Benjamin W., Bone, Sharon E., Lezama Pacheco, Juan S., Kozimor, Stosh A., Fanwick, Phillip E., Zeller, Matthias, & Bart, Suzanne C. Redox-Active vs Redox-Innocent: A Comparison of Uranium Complexes Containing Diamine Ligands. United States. https://doi.org/10.1021/acs.inorgchem.8b00663
Pattenaude, Scott A., Mullane, Kimberly C., Schelter, Eric J., Ferrier, Maryline G., Stein, Benjamin W., Bone, Sharon E., Lezama Pacheco, Juan S., Kozimor, Stosh A., Fanwick, Phillip E., Zeller, Matthias, and Bart, Suzanne C. Fri . "Redox-Active vs Redox-Innocent: A Comparison of Uranium Complexes Containing Diamine Ligands". United States. https://doi.org/10.1021/acs.inorgchem.8b00663. https://www.osti.gov/servlets/purl/1470936.
@article{osti_1470936,
title = {Redox-Active vs Redox-Innocent: A Comparison of Uranium Complexes Containing Diamine Ligands},
author = {Pattenaude, Scott A. and Mullane, Kimberly C. and Schelter, Eric J. and Ferrier, Maryline G. and Stein, Benjamin W. and Bone, Sharon E. and Lezama Pacheco, Juan S. and Kozimor, Stosh A. and Fanwick, Phillip E. and Zeller, Matthias and Bart, Suzanne C.},
abstractNote = {Here uranium complexes (MesDAE)2U(THF) (1-DAE) and Cp2U(MesDAE) (2-DAE) (MesDAE = [ArN-CH2CH2-NAr]; Ar = 2,4,6-trimethylphenyl (Mes)), bearing redox-innocent diamide ligands, have been synthesized and characterized for a full comparison with previously published, redox-active diimine complexes, (MesDABMe)2U(THF) (1-DAB) and Cp2U(MesDABMe) (2-DAB) (MesDABMe = [ArN=C(Me)C(Me)=NAr]; Ar = Mes). These redox-innocent analogues maintain an analogous steric environment to their redox-active ligand counterparts to facilitate a study aimed at determining the differing electronic behavior around the uranium center. Structural analysis by X-ray crystallography showed 1-DAE and 2-DAE have a structural environment very similar to 1-DAB and 2-DAB, respectively. The main difference occurs with coordination of the ene-backbone to the uranium center in the latter species. Electronic absorption spectroscopy reveals these new DAE complexes are nearly identical to each other. X-ray absorption spectroscopy suggests all four species contain +4 uranium ions. The data also indicates that there is an electronic difference between the bis(diamide)-THF uranium complexes as opposed to those that only contain one diamide and two cyclopentadienyl rings. Finally, magnetic measurements reveal that all complexes display temperature-dependent behavior consistent with uranium(IV) ions that do not include ligand radicals. Overall, this study determines that there is no significant bonding difference between the redox-innocent and redox-active ligand frameworks on uranium. Furthermore, there are no data to suggest covalent bonding character using the latter ligand framework on uranium, despite what is known for transition metals.},
doi = {10.1021/acs.inorgchem.8b00663},
journal = {Inorganic Chemistry},
number = 11,
volume = 57,
place = {United States},
year = {Fri May 11 00:00:00 EDT 2018},
month = {Fri May 11 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Uranium complexes featured in this study.

Save / Share:

Works referenced in this record:

Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands
journal, May 2015


Redox-active ligands in catalysis
journal, January 2013

  • Luca, Oana R.; Crabtree, Robert H.
  • Chem. Soc. Rev., Vol. 42, Issue 4
  • DOI: 10.1039/C2CS35228A

The Shrinking World of Innocent Ligands: Conventionaland Non-Conventional Redox-Active Ligands
journal, January 2012


Noninnocence in Metal Complexes: A Dithiolene Dawn
journal, October 2011

  • Eisenberg, Richard; Gray, Harry B.
  • Inorganic Chemistry, Vol. 50, Issue 20
  • DOI: 10.1021/ic2011748

Preface: Forum on Redox-Active Ligands
journal, October 2011


Radical Ligands Confer Nobility on Base-Metal Catalysts
journal, February 2010


New avenues for ligand-mediated processes – expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands
journal, January 2015

  • Broere, Daniël L. J.; Plessius, Raoul; van der Vlugt, Jarl Ivar
  • Chemical Society Reviews, Vol. 44, Issue 19
  • DOI: 10.1039/C5CS00161G

Redox-Active Ligands in Catalysis
journal, September 2012

  • Praneeth, Vijayendran K. K.; Ringenberg, Mark R.; Ward, Thomas R.
  • Angewandte Chemie International Edition, Vol. 51, Issue 41
  • DOI: 10.1002/anie.201204100

Functional metal complexes based on bridging “imino”-quinonoid ligands
journal, June 2015

  • Sarkar, Biprajit; Schweinfurth, David; Deibel, Naina
  • Coordination Chemistry Reviews, Vol. 293-294
  • DOI: 10.1016/j.ccr.2015.01.015

Synthesis and characterization of a tetrathiafulvalene-salphen actinide complex
journal, January 2013

  • Bejger, Christopher; Tian, Yong-Hui; Barker, Beau J.
  • Dalton Transactions, Vol. 42, Issue 19
  • DOI: 10.1039/c3dt50698c

Valence tautomerism in metal complexes: Stimulated and reversible intramolecular electron transfer between metal centers and organic ligands
journal, June 2014

  • Tezgerevska, Tina; Alley, Kerwyn G.; Boskovic, Colette
  • Coordination Chemistry Reviews, Vol. 268
  • DOI: 10.1016/j.ccr.2014.01.014

Synthesis of [M'-N4] and [M'-N6] complexes based on o-benzoquinone diimine with cobalt, iron, and ruthenium
journal, November 1977


Molecular and Electronic Structures of Bis(pyridine-2,6-diimine)metal Complexes [ML 2 ](PF 6 ) n ( n = 0, 1, 2, 3; M = Mn, Fe, Co, Ni, Cu, Zn)
journal, June 2000

  • de Bruin, Bas; Bill, Eckhard; Bothe, Eberhard
  • Inorganic Chemistry, Vol. 39, Issue 13
  • DOI: 10.1021/ic000113j

Metal and Ligand Effects on Bonding in Group 6 Complexes of Redox-Active Amidodiphenoxides
journal, September 2014

  • Ranis, Leila G.; Werellapatha, Kalpani; Pietrini, Nicholas J.
  • Inorganic Chemistry, Vol. 53, Issue 19
  • DOI: 10.1021/ic501222n

Complexes with Nitrogen-Centered Radical Ligands: Classification, Spectroscopic Features, Reactivity, and Catalytic Applications
journal, November 2013

  • Suarez, Alma I. Olivos; Lyaskovskyy, Volodymyr; Reek, Joost N. H.
  • Angewandte Chemie International Edition, Vol. 52, Issue 48
  • DOI: 10.1002/anie.201301487

Examining the Effects of Ligand Variation on the Electronic Structure of Uranium Bis(imido) Species
journal, October 2016

  • Kiernicki, John J.; Ferrier, Maryline G.; Lezama Pacheco, Juan S.
  • Journal of the American Chemical Society, Vol. 138, Issue 42
  • DOI: 10.1021/jacs.6b06989

Synthesis, Characterization, and Stoichiometric U–O Bond Scission in Uranyl Species Supported by Pyridine(diimine) Ligand Radicals
journal, August 2015

  • Kiernicki, John J.; Cladis, Dennis P.; Fanwick, Phillip E.
  • Journal of the American Chemical Society, Vol. 137, Issue 34
  • DOI: 10.1021/jacs.5b06217

Multielectron C–O Bond Activation Mediated by a Family of Reduced Uranium Complexes
journal, March 2014

  • Kiernicki, John J.; Newell, Brian S.; Matson, Ellen M.
  • Inorganic Chemistry, Vol. 53, Issue 7
  • DOI: 10.1021/ic500012x

Utility of a redox-active pyridine(diimine) chelate in facilitating two electron oxidative addition chemistry at uranium
journal, January 2014

  • Kiernicki, John J.; Fanwick, Phillip E.; Bart, Suzanne C.
  • Chemical Communications, Vol. 50, Issue 60
  • DOI: 10.1039/c4cc03355h

Spectroscopic and Structural Elucidation of Uranium Dioxophenoxazine Complexes
journal, June 2015


Investigation of the Electronic Ground States for a Reduced Pyridine(diimine) Uranium Series: Evidence for a Ligand Tetraanion Stabilized by a Uranium Dimer
journal, April 2015

  • Anderson, Nickolas H.; Odoh, Samuel O.; Williams, Ursula J.
  • Journal of the American Chemical Society, Vol. 137, Issue 14
  • DOI: 10.1021/ja511867a

Multielectron Redox Reactions Involving C−C Coupling and Cleavage in Uranium Schiff Base Complexes
journal, December 2010

  • Camp, Clément; Mougel, Victor; Horeglad, Pawel
  • Journal of the American Chemical Society, Vol. 132, Issue 49
  • DOI: 10.1021/ja1089364

Anionic and neutral bis(diimine)lanthanide complexes
journal, June 2010

  • Fedushkin, Igor L.; Maslova, Olga V.; Lukoyanov, Anton N.
  • Comptes Rendus Chimie, Vol. 13, Issue 6-7
  • DOI: 10.1016/j.crci.2010.05.011

Reduction of Carbonyl Groups by Uranium(III) and Formation of a Stable Amide Radical Anion
journal, December 2017

  • Mullane, Kimberly C.; Cheisson, Thibault; Nakamaru-Ogiso, Eiko
  • Chemistry - A European Journal, Vol. 24, Issue 4
  • DOI: 10.1002/chem.201703396

Electro-kinetic Separation of Rare Earth Elements Using a Redox-Active Ligand
journal, September 2017

  • Fang, Huayi; Cole, Bren E.; Qiao, Yusen
  • Angewandte Chemie International Edition, Vol. 56, Issue 43
  • DOI: 10.1002/anie.201706894

Harnessing redox activity for the formation of uranium tris(imido) compounds
journal, July 2014

  • Anderson, Nickolas H.; Odoh, Samuel O.; Yao, Yiyi
  • Nature Chemistry, Vol. 6, Issue 10
  • DOI: 10.1038/nchem.2009

Preparation and Reactions of Base-Free Bis(1,2,4-tri- tert -butylcyclopentadienyl)uranium Oxide, Cp‘ 2 UO
journal, August 2005

  • Zi, Guofu; Jia, Li; Werkema, Evan L.
  • Organometallics, Vol. 24, Issue 17
  • DOI: 10.1021/om050406q

Synthesis and electronic structure determination of uranium( vi ) ligand radical complexes
journal, January 2016

  • Herasymchuk, Khrystyna; Chiang, Linus; Hayes, Cassandra E.
  • Dalton Transactions, Vol. 45, Issue 31
  • DOI: 10.1039/C6DT02089E

Electronic Structure of Bis(imino)pyridine Iron Dichloride, Monochloride, and Neutral Ligand Complexes:  A Combined Structural, Spectroscopic, and Computational Study
journal, October 2006

  • Bart, Suzanne C.; Chłopek, Krzysztof; Bill, Eckhard
  • Journal of the American Chemical Society, Vol. 128, Issue 42
  • DOI: 10.1021/ja064557b

Ligand-centred reactivity in diiminepyridine complexes
journal, January 2006

  • Knijnenburg, Quinten; Gambarotta, Sandro; Budzelaar, Peter H. M.
  • Dalton Transactions, Issue 46
  • DOI: 10.1039/b612251e

Synthesis, Characterization, and Multielectron Reduction Chemistry of Uranium Supported by Redox-Active α-Diimine Ligands
journal, October 2011

  • Kraft, Steven J.; Williams, Ursula J.; Daly, Scott R.
  • Inorganic Chemistry, Vol. 50, Issue 20
  • DOI: 10.1021/ic2002805

Actinide Redox-Active Ligand Complexes: Reversible Intramolecular Electron-Transfer in U(dpp-BIAN) 2 /U(dpp-BIAN) 2 (THF)
journal, February 2010

  • Schelter, Eric J.; Wu, Ruilian; Scott, Brian L.
  • Inorganic Chemistry, Vol. 49, Issue 3
  • DOI: 10.1021/ic901636f

Homoleptic diazadiene complexes of titanium, yttrium, and some lanthanoid elements
journal, January 1986

  • Cloke, F. Geoffrey N.; de Lemos, Helen C.; Sameh, Ausama A.
  • Journal of the Chemical Society, Chemical Communications, Issue 17
  • DOI: 10.1039/c39860001344

Organolanthanid(II)chemie: Reaktionen von CP 2 Sm(THF)2 mit 1,4-diazadienen und cyclooctatetraen
journal, June 1991

  • Recknagel, Anja; Noltemeyer, Mathias; Edelmann, Frank T.
  • Journal of Organometallic Chemistry, Vol. 410, Issue 1
  • DOI: 10.1016/0022-328X(91)83024-X

Safe and Convenient Procedure for Solvent Purification
journal, January 1996

  • Pangborn, Amy B.; Giardello, Michael A.; Grubbs, Robert H.
  • Organometallics, Vol. 15, Issue 5, p. 1518-1520
  • DOI: 10.1021/om9503712

Transmetalation and Double Metal Exchange: A Convenient Route to Organolithium Compounds of the Benzyl and Allyl Type
journal, June 1973

  • Schlosser, Manfred; Hartmann, J�rgen
  • Angewandte Chemie International Edition in English, Vol. 12, Issue 6
  • DOI: 10.1002/anie.197305082

Diamagnetic Corrections and Pascal's Constants
journal, April 2008

  • Bain, Gordon A.; Berry, John F.
  • Journal of Chemical Education, Vol. 85, Issue 4
  • DOI: 10.1021/ed085p532

Thiadiazolidine 1-oxide systems for phosphine-free palladium-mediated catalysis
journal, October 2010


A Diazabutadiene stabilized Nickel(0) Cyclooctadiene Complex: Synthesis, Characterization and the Reaction with Diphenylacetylene
journal, April 2006

  • Schaub, Thomas; Radius, Udo
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 632, Issue 5
  • DOI: 10.1002/zaac.200500424

2,3-Bis(2-ethylphenylimino)butane
journal, November 2007

  • Martins, Roberto S.; Filgueiras, Carlos A. L.; Visentin, Lorenzo do C.
  • Acta Crystallographica Section E Structure Reports Online, Vol. 63, Issue 12
  • DOI: 10.1107/S1600536807049367

Quantifying Steric Effects of α-Diimine Ligands. Oxidative Addition of MeI to Rhodium(I) and Migratory Insertion in Rhodium(III) Complexes
journal, March 2003

  • Gonsalvi, Luca; Gaunt, Joseph A.; Adams, Harry
  • Organometallics, Vol. 22, Issue 5
  • DOI: 10.1021/om020777w

Palladium co-ordination chemistry of β-diimines: a preparative and structural comparison with α-diimines
journal, June 2003


Thorium(IV) and Uranium(IV) Ketimide Complexes Prepared by Nitrile Insertion into Actinide−Alkyl and −Aryl Bonds
journal, September 2004

  • Jantunen, Kimberly C.; Burns, Carol J.; Castro-Rodriguez, Ingrid
  • Organometallics, Vol. 23, Issue 20
  • DOI: 10.1021/om0343824

Structural and Spectroscopic Characterization of a Charge-Separated Uranium Benzophenone Ketyl Radical Complex
journal, May 2008

  • Lam, Oanh P.; Anthon, Christian; Heinemann, Frank W.
  • Journal of the American Chemical Society, Vol. 130, Issue 20
  • DOI: 10.1021/ja801007q

Investigation of Uranium Tris(imido) Complexes: Synthesis, Characterization, and Reduction Chemistry of [U(NDIPP) 3 (thf) 3 ]
journal, July 2015

  • Anderson, Nickolas H.; Yin, Haolin; Kiernicki, John J.
  • Angewandte Chemie International Edition, Vol. 54, Issue 32
  • DOI: 10.1002/anie.201503771

Oxidation State Delineation via U L III -Edge XANES in a Series of Isostructural Uranium Coordination Complexes
journal, April 2012

  • Kosog, Boris; La Pierre, Henry S.; Denecke, Melissa A.
  • Inorganic Chemistry, Vol. 51, Issue 14
  • DOI: 10.1021/ic3011234

Investigating Actinyl Oxo Cations by X-ray Absorption Spectroscopy
journal, November 2003

  • Den Auwer, Christophe; Simoni, Eric; Conradson, Steven
  • European Journal of Inorganic Chemistry, Vol. 2003, Issue 21
  • DOI: 10.1002/ejic.200300093

Investigations of the Electronic Structure of Arene-Bridged Diuranium Complexes
journal, January 2013

  • Vlaisavljevich, Bess; Diaconescu, Paula L.; Lukens, Wayne L.
  • Organometallics, Vol. 32, Issue 5
  • DOI: 10.1021/om3010367

X-ray absorption spectroscopic study of trivalent and tetravalent actinides in solution at varying pH values
journal, January 2009

  • Brendebach, Boris; Banik, N. L.; Marquardt, Christian M.
  • Radiochimica Acta, Vol. 97, Issue 12
  • DOI: 10.1524/ract.2009.1674

Coordination of Actinide Ions in Wells−Dawson Heteropolyoxoanion Complexes
journal, July 2003

  • Chiang, Ming-Hsi; Williams, Clayton W.; Soderholm, L.
  • European Journal of Inorganic Chemistry, Vol. 2003, Issue 14
  • DOI: 10.1002/ejic.200300014

Structures of Substituted-Cyclopentadienyl Uranium(III) Dimers and Related Uranium Metallocenes Deduced by EXAFS
journal, March 1999

  • Lukens, Wayne W.; Allen, Patrick G.; Bucher, Jerome J.
  • Organometallics, Vol. 18, Issue 7
  • DOI: 10.1021/om980600v

Metal-to-Ligand Electron Transfer in Diiminopyridine Complexes of Mn−Zn. A Theoretical Study
journal, August 2001

  • Budzelaar, Peter H. M.; de Bruin, Bas; Gal, Anton W.
  • Inorganic Chemistry, Vol. 40, Issue 18
  • DOI: 10.1021/ic001457c

Dioxygen Activation by a Mononuclear IrII–Ethene Complex
journal, June 2002


Magnetic Susceptibility of Uranium Complexes
journal, August 2014

  • Kindra, Douglas R.; Evans, William J.
  • Chemical Reviews, Vol. 114, Issue 18
  • DOI: 10.1021/cr500242w

Systematic Studies of Early Actinide Complexes:  Uranium(IV) Fluoroketimides
journal, September 2007

  • Schelter, Eric J.; Yang, Ping; Scott, Brian L.
  • Inorganic Chemistry, Vol. 46, Issue 18
  • DOI: 10.1021/ic700455b

Experimental Evidence for Magnetic Exchange in Di- and Trinuclear Uranium(IV) Ethynylbenzene Complexes
journal, February 2010

  • Newell, Brian S.; Rappé, Anthony K.; Shores, Matthew P.
  • Inorganic Chemistry, Vol. 49, Issue 4
  • DOI: 10.1021/ic901986w

Magnetic Exchange Coupling in Chloride-Bridged 5f−3d Heterometallic Complexes Generated via Insertion into a Uranium(IV) Dimethylpyrazolate Dimer
journal, September 2007

  • Kozimor, Stosh A.; Bartlett, Bart M.; Rinehart, Jeffrey D.
  • Journal of the American Chemical Society, Vol. 129, Issue 35
  • DOI: 10.1021/ja0725044

Works referencing / citing this record:

An improved laboratory-based x-ray absorption fine structure and x-ray emission spectrometer for analytical applications in materials chemistry research
journal, February 2019

  • Jahrman, Evan P.; Holden, William M.; Ditter, Alexander S.
  • Review of Scientific Instruments, Vol. 90, Issue 2
  • DOI: 10.1063/1.5049383

Ruthenium (II) complexes bearing thioether‐appended α‐iminopyridine ligands: Arene precursors permit access to κ 2 ‐N,N and κ 3 ‐N,N,S complexes
journal, January 2020

  • Ternes, Victoria A.; Morgan, Hannah A.; Lanquist, Austin P.
  • Applied Organometallic Chemistry, Vol. 34, Issue 4
  • DOI: 10.1002/aoc.5459

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.