skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications

Abstract

Three-dimensional magnetic nanostructures hold great potential to revolutionize information technologies and to enable the study of novel physical phenomena. In this work, we describe a hybrid nanofabrication process combining bottom-up 3D nano-printing and top-down thin film deposition, which leads to the fabrication of complex magnetic nanostructures suitable for the study of new 3D magnetic effects. First, a non-magnetic 3D scaffold is nano-printed using Focused Electron Beam Induced Deposition; then a thin film magnetic material is thermally evaporated onto the scaffold, leading to a functional 3D magnetic nanostructure. Scaffold geometries are extended beyond recently developed single-segment geometries by introducing a dual-pitch patterning strategy. Additionally, by tilting the substrate during growth, low-angle segments can be patterned, circumventing a major limitation of this nano-printing process; this is demonstrated by the fabrication of ‘staircase’ nanostructures with segments parallel to the substrate. The suitability of nano-printed scaffolds to support thermally evaporated thin films is discussed, outlining the importance of including supporting pillars to prevent deformation during the evaporation process. Employing this set of methods, a set of nanostructures tailored to precisely match a dark-field magneto-optical magnetometer have been fabricated and characterized. In conclusion, this work demonstrates the versatility of this hybrid technique and the interestingmore » magnetic properties of the nanostructures produced, opening a promising route for the development of new 3D devices for applications and fundamental studies.« less

Authors:
 [1];  [2];  [3];  [1];  [1]; ORCiD logo [4]; ORCiD logo [4];  [3];  [3];  [2]; ORCiD logo [1]
  1. Univ. of Cambridge (United Kingdom). Cavendish Lab.
  2. Eindhoven Univ. of Technology (Netherlands). Dept. of Applied Physics
  3. Univ. of Cambridge (United Kingdom). Dept. of Chemistry
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary Research
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE; Royal Society
OSTI Identifier:
1470874
Grant/Contract Number:  
AC05-00OR22725; RG170262
Resource Type:
Accepted Manuscript
Journal Name:
Nanomaterials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 7; Journal ID: ISSN 2079-4991
Publisher:
MDPI
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; 3D-nanoprinting; Focused Electron Beam Induced Deposition; nanomagnetism; FEBID; nanowire; nanofabrication; direct write; thin film

Citation Formats

Sanz-Hernandez, Dodalo, Hamans, Ruben, Osterrieth, Johannes, Liao, Jung-Wei, Skoric, Luka, Fowlkes, Jason Davidson, Rack, Philip D., Lippert, Anna, F. Lee, Steven, Lavrijsen, Reinoud, and Fernandez-Pacheco, Amalio. Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications. United States: N. p., 2018. Web. doi:10.3390/nano8070483.
Sanz-Hernandez, Dodalo, Hamans, Ruben, Osterrieth, Johannes, Liao, Jung-Wei, Skoric, Luka, Fowlkes, Jason Davidson, Rack, Philip D., Lippert, Anna, F. Lee, Steven, Lavrijsen, Reinoud, & Fernandez-Pacheco, Amalio. Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications. United States. doi:10.3390/nano8070483.
Sanz-Hernandez, Dodalo, Hamans, Ruben, Osterrieth, Johannes, Liao, Jung-Wei, Skoric, Luka, Fowlkes, Jason Davidson, Rack, Philip D., Lippert, Anna, F. Lee, Steven, Lavrijsen, Reinoud, and Fernandez-Pacheco, Amalio. Sat . "Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications". United States. doi:10.3390/nano8070483. https://www.osti.gov/servlets/purl/1470874.
@article{osti_1470874,
title = {Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications},
author = {Sanz-Hernandez, Dodalo and Hamans, Ruben and Osterrieth, Johannes and Liao, Jung-Wei and Skoric, Luka and Fowlkes, Jason Davidson and Rack, Philip D. and Lippert, Anna and F. Lee, Steven and Lavrijsen, Reinoud and Fernandez-Pacheco, Amalio},
abstractNote = {Three-dimensional magnetic nanostructures hold great potential to revolutionize information technologies and to enable the study of novel physical phenomena. In this work, we describe a hybrid nanofabrication process combining bottom-up 3D nano-printing and top-down thin film deposition, which leads to the fabrication of complex magnetic nanostructures suitable for the study of new 3D magnetic effects. First, a non-magnetic 3D scaffold is nano-printed using Focused Electron Beam Induced Deposition; then a thin film magnetic material is thermally evaporated onto the scaffold, leading to a functional 3D magnetic nanostructure. Scaffold geometries are extended beyond recently developed single-segment geometries by introducing a dual-pitch patterning strategy. Additionally, by tilting the substrate during growth, low-angle segments can be patterned, circumventing a major limitation of this nano-printing process; this is demonstrated by the fabrication of ‘staircase’ nanostructures with segments parallel to the substrate. The suitability of nano-printed scaffolds to support thermally evaporated thin films is discussed, outlining the importance of including supporting pillars to prevent deformation during the evaporation process. Employing this set of methods, a set of nanostructures tailored to precisely match a dark-field magneto-optical magnetometer have been fabricated and characterized. In conclusion, this work demonstrates the versatility of this hybrid technique and the interesting magnetic properties of the nanostructures produced, opening a promising route for the development of new 3D devices for applications and fundamental studies.},
doi = {10.3390/nano8070483},
journal = {Nanomaterials},
number = 7,
volume = 8,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanotechnology: Thin solid films roll up into nanotubes
journal, March 2001

  • Schmidt, Oliver G.; Eberl, Karl
  • Nature, Vol. 410, Issue 6825, Article No. 168
  • DOI: 10.1038/35065525

A critical literature review of focused electron beam induced deposition
journal, October 2008

  • van Dorp, W. F.; Hagen, C. W.
  • Journal of Applied Physics, Vol. 104, Issue 8
  • DOI: 10.1063/1.2977587

The 2017 Magnetism Roadmap
journal, August 2017

  • Sander, D.; Valenzuela, S. O.; Makarov, D.
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 36
  • DOI: 10.1088/1361-6463/aa81a1

Nanoporous alumina as templates for multifunctional applications
journal, September 2014

  • Sousa, C. T.; Leitao, D. C.; Proenca, M. P.
  • Applied Physics Reviews, Vol. 1, Issue 3
  • DOI: 10.1063/1.4893546

Modelling focused electron beam induced deposition beyond Langmuir adsorption
journal, January 2017

  • Sanz-Hernández, Dédalo; Fernández-Pacheco, Amalio
  • Beilstein Journal of Nanotechnology, Vol. 8
  • DOI: 10.3762/bjnano.8.214

Magnetic multilayers on nanospheres
journal, February 2005

  • Albrecht, Manfred; Hu, Guohan; Guhr, Ildico L.
  • Nature Materials, Vol. 4, Issue 3
  • DOI: 10.1038/nmat1324

Gas-assisted focused electron beam and ion beam processing and fabrication
journal, January 2008

  • Utke, Ivo; Hoffmann, Patrik; Melngailis, John
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 26, Issue 4
  • DOI: 10.1116/1.2955728

Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition
journal, May 2016


Nanocolumnar Interfaces and Enhanced Magnetic Coercivity in Preferentially oriented Cobalt Ferrite Thin Films Grown Using Oblique-Angle Pulsed Laser Deposition
journal, July 2013

  • Mukherjee, Devajyoti; Hordagoda, Mahesh; Hyde, Robert
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 15
  • DOI: 10.1021/am401771z

Element-Specific X-Ray Phase Tomography of 3D Structures at the Nanoscale
journal, March 2015


CASINO V2.42—A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users
journal, January 2007

  • Drouin, Dominique; Couture, Alexandre Réal; Joly, Dany
  • Scanning, Vol. 29, Issue 3
  • DOI: 10.1002/sca.20000

Fabrication, Detection, and Operation of a Three-Dimensional Nanomagnetic Conduit
journal, September 2017

  • Sanz-Hernández, Dédalo; Hamans, Ruben F.; Liao, Jung-Wei
  • ACS Nano, Vol. 11, Issue 11
  • DOI: 10.1021/acsnano.7b05105

Fourier magnetic imaging
journal, August 2011

  • Verduci, T.; Rufo, C.; Berger, A.
  • Applied Physics Letters, Vol. 99, Issue 9
  • DOI: 10.1063/1.3630049

High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)
journal, February 2018

  • Fowlkes, Jason D.; Winkler, R.; Lewis, Brett B.
  • ACS Applied Nano Materials, Vol. 1, Issue 3
  • DOI: 10.1021/acsanm.7b00342

Three-dimensional nanomagnetism
journal, June 2017

  • Fernández-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15756

High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals
journal, February 2018

  • Winkler, R.; Lewis, B. B.; Fowlkes, J. D.
  • ACS Applied Nano Materials, Vol. 1, Issue 3
  • DOI: 10.1021/acsanm.8b00158

Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID)
journal, May 2016


Direct-write of free-form building blocks for artificial magnetic 3D lattices
journal, April 2018


Invited article: Vector and Bragg Magneto-optical Kerr effect for the analysis of nanostructured magnetic arrays
journal, December 2007

  • Westphalen, A.; Lee, M. -S.; Remhof, A.
  • Review of Scientific Instruments, Vol. 78, Issue 12
  • DOI: 10.1063/1.2821148

Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport
journal, January 2012


Three dimensional magnetic nanowires grown by focused electron-beam induced deposition
journal, March 2013

  • Fernández-Pacheco, Amalio; Serrano-Ramón, Luis; Michalik, Jan M.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01492

Shifted hysteresis loops from magnetic nanowires
journal, November 2002

  • Allwood, D. A.; Vernier, N.; Xiong, Gang
  • Applied Physics Letters, Vol. 81, Issue 21
  • DOI: 10.1063/1.1523634

    Works referencing / citing this record:

    Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport
    journal, January 2012


    CASINO V2.42—A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users
    journal, January 2007

    • Drouin, Dominique; Couture, Alexandre Réal; Joly, Dany
    • Scanning, Vol. 29, Issue 3
    • DOI: 10.1002/sca.20000

    High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)
    journal, February 2018

    • Fowlkes, Jason D.; Winkler, R.; Lewis, Brett B.
    • ACS Applied Nano Materials, Vol. 1, Issue 3
    • DOI: 10.1021/acsanm.7b00342

    High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals
    journal, February 2018

    • Winkler, R.; Lewis, B. B.; Fowlkes, J. D.
    • ACS Applied Nano Materials, Vol. 1, Issue 3
    • DOI: 10.1021/acsanm.8b00158

    Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition
    journal, May 2016


    Fabrication, Detection, and Operation of a Three-Dimensional Nanomagnetic Conduit
    journal, September 2017

    • Sanz-Hernández, Dédalo; Hamans, Ruben F.; Liao, Jung-Wei
    • ACS Nano, Vol. 11, Issue 11
    • DOI: 10.1021/acsnano.7b05105

    Nanocolumnar Interfaces and Enhanced Magnetic Coercivity in Preferentially oriented Cobalt Ferrite Thin Films Grown Using Oblique-Angle Pulsed Laser Deposition
    journal, July 2013

    • Mukherjee, Devajyoti; Hordagoda, Mahesh; Hyde, Robert
    • ACS Applied Materials & Interfaces, Vol. 5, Issue 15
    • DOI: 10.1021/am401771z

    Nanotechnology: Thin solid films roll up into nanotubes
    journal, March 2001

    • Schmidt, Oliver G.; Eberl, Karl
    • Nature, Vol. 410, Issue 6825, Article No. 168
    • DOI: 10.1038/35065525

    Three-dimensional nanomagnetism
    journal, June 2017

    • Fernández-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier
    • Nature Communications, Vol. 8, Issue 1
    • DOI: 10.1038/ncomms15756

    Magnetic multilayers on nanospheres
    journal, February 2005

    • Albrecht, Manfred; Hu, Guohan; Guhr, Ildico L.
    • Nature Materials, Vol. 4, Issue 3
    • DOI: 10.1038/nmat1324

    Direct-write of free-form building blocks for artificial magnetic 3D lattices
    journal, April 2018


    Three dimensional magnetic nanowires grown by focused electron-beam induced deposition
    journal, March 2013

    • Fernández-Pacheco, Amalio; Serrano-Ramón, Luis; Michalik, Jan M.
    • Scientific Reports, Vol. 3, Issue 1
    • DOI: 10.1038/srep01492

    Shifted hysteresis loops from magnetic nanowires
    journal, November 2002

    • Allwood, D. A.; Vernier, N.; Xiong, Gang
    • Applied Physics Letters, Vol. 81, Issue 21
    • DOI: 10.1063/1.1523634

    Invited article: Vector and Bragg Magneto-optical Kerr effect for the analysis of nanostructured magnetic arrays
    journal, December 2007

    • Westphalen, A.; Lee, M. -S.; Remhof, A.
    • Review of Scientific Instruments, Vol. 78, Issue 12
    • DOI: 10.1063/1.2821148

    A critical literature review of focused electron beam induced deposition
    journal, October 2008

    • van Dorp, W. F.; Hagen, C. W.
    • Journal of Applied Physics, Vol. 104, Issue 8
    • DOI: 10.1063/1.2977587

    Fourier magnetic imaging
    journal, August 2011

    • Verduci, T.; Rufo, C.; Berger, A.
    • Applied Physics Letters, Vol. 99, Issue 9
    • DOI: 10.1063/1.3630049

    Nanoporous alumina as templates for multifunctional applications
    journal, September 2014

    • Sousa, C. T.; Leitao, D. C.; Proenca, M. P.
    • Applied Physics Reviews, Vol. 1, Issue 3
    • DOI: 10.1063/1.4893546

    Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID)
    journal, May 2016


    The 2017 Magnetism Roadmap
    journal, August 2017

    • Sander, D.; Valenzuela, S. O.; Makarov, D.
    • Journal of Physics D: Applied Physics, Vol. 50, Issue 36
    • DOI: 10.1088/1361-6463/aa81a1

    Gas-assisted focused electron beam and ion beam processing and fabrication
    journal, January 2008

    • Utke, Ivo; Hoffmann, Patrik; Melngailis, John
    • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 26, Issue 4
    • DOI: 10.1116/1.2955728

    Modelling focused electron beam induced deposition beyond Langmuir adsorption
    journal, January 2017

    • Sanz-Hernández, Dédalo; Fernández-Pacheco, Amalio
    • Beilstein Journal of Nanotechnology, Vol. 8
    • DOI: 10.3762/bjnano.8.214