DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications

Abstract

Three-dimensional magnetic nanostructures hold great potential to revolutionize information technologies and to enable the study of novel physical phenomena. In this work, we describe a hybrid nanofabrication process combining bottom-up 3D nano-printing and top-down thin film deposition, which leads to the fabrication of complex magnetic nanostructures suitable for the study of new 3D magnetic effects. First, a non-magnetic 3D scaffold is nano-printed using Focused Electron Beam Induced Deposition; then a thin film magnetic material is thermally evaporated onto the scaffold, leading to a functional 3D magnetic nanostructure. Scaffold geometries are extended beyond recently developed single-segment geometries by introducing a dual-pitch patterning strategy. Additionally, by tilting the substrate during growth, low-angle segments can be patterned, circumventing a major limitation of this nano-printing process; this is demonstrated by the fabrication of ‘staircase’ nanostructures with segments parallel to the substrate. The suitability of nano-printed scaffolds to support thermally evaporated thin films is discussed, outlining the importance of including supporting pillars to prevent deformation during the evaporation process. Employing this set of methods, a set of nanostructures tailored to precisely match a dark-field magneto-optical magnetometer have been fabricated and characterized. In conclusion, this work demonstrates the versatility of this hybrid technique and the interestingmore » magnetic properties of the nanostructures produced, opening a promising route for the development of new 3D devices for applications and fundamental studies.« less

Authors:
 [1];  [2];  [3];  [1];  [1]; ORCiD logo [4]; ORCiD logo [4];  [3];  [3];  [2]; ORCiD logo [1]
  1. Univ. of Cambridge (United Kingdom). Cavendish Lab.
  2. Eindhoven Univ. of Technology (Netherlands). Dept. of Applied Physics
  3. Univ. of Cambridge (United Kingdom). Dept. of Chemistry
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary Research
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE; Royal Society
OSTI Identifier:
1470874
Grant/Contract Number:  
AC05-00OR22725; RG170262
Resource Type:
Accepted Manuscript
Journal Name:
Nanomaterials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 7; Journal ID: ISSN 2079-4991
Publisher:
MDPI
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; 3D-nanoprinting; Focused Electron Beam Induced Deposition; nanomagnetism; FEBID; nanowire; nanofabrication; direct write; thin film

Citation Formats

Sanz-Hernandez, Dodalo, Hamans, Ruben, Osterrieth, Johannes, Liao, Jung-Wei, Skoric, Luka, Fowlkes, Jason Davidson, Rack, Philip D., Lippert, Anna, F. Lee, Steven, Lavrijsen, Reinoud, and Fernandez-Pacheco, Amalio. Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications. United States: N. p., 2018. Web. doi:10.3390/nano8070483.
Sanz-Hernandez, Dodalo, Hamans, Ruben, Osterrieth, Johannes, Liao, Jung-Wei, Skoric, Luka, Fowlkes, Jason Davidson, Rack, Philip D., Lippert, Anna, F. Lee, Steven, Lavrijsen, Reinoud, & Fernandez-Pacheco, Amalio. Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications. United States. https://doi.org/10.3390/nano8070483
Sanz-Hernandez, Dodalo, Hamans, Ruben, Osterrieth, Johannes, Liao, Jung-Wei, Skoric, Luka, Fowlkes, Jason Davidson, Rack, Philip D., Lippert, Anna, F. Lee, Steven, Lavrijsen, Reinoud, and Fernandez-Pacheco, Amalio. Sat . "Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications". United States. https://doi.org/10.3390/nano8070483. https://www.osti.gov/servlets/purl/1470874.
@article{osti_1470874,
title = {Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications},
author = {Sanz-Hernandez, Dodalo and Hamans, Ruben and Osterrieth, Johannes and Liao, Jung-Wei and Skoric, Luka and Fowlkes, Jason Davidson and Rack, Philip D. and Lippert, Anna and F. Lee, Steven and Lavrijsen, Reinoud and Fernandez-Pacheco, Amalio},
abstractNote = {Three-dimensional magnetic nanostructures hold great potential to revolutionize information technologies and to enable the study of novel physical phenomena. In this work, we describe a hybrid nanofabrication process combining bottom-up 3D nano-printing and top-down thin film deposition, which leads to the fabrication of complex magnetic nanostructures suitable for the study of new 3D magnetic effects. First, a non-magnetic 3D scaffold is nano-printed using Focused Electron Beam Induced Deposition; then a thin film magnetic material is thermally evaporated onto the scaffold, leading to a functional 3D magnetic nanostructure. Scaffold geometries are extended beyond recently developed single-segment geometries by introducing a dual-pitch patterning strategy. Additionally, by tilting the substrate during growth, low-angle segments can be patterned, circumventing a major limitation of this nano-printing process; this is demonstrated by the fabrication of ‘staircase’ nanostructures with segments parallel to the substrate. The suitability of nano-printed scaffolds to support thermally evaporated thin films is discussed, outlining the importance of including supporting pillars to prevent deformation during the evaporation process. Employing this set of methods, a set of nanostructures tailored to precisely match a dark-field magneto-optical magnetometer have been fabricated and characterized. In conclusion, this work demonstrates the versatility of this hybrid technique and the interesting magnetic properties of the nanostructures produced, opening a promising route for the development of new 3D devices for applications and fundamental studies.},
doi = {10.3390/nano8070483},
journal = {Nanomaterials},
number = 7,
volume = 8,
place = {United States},
year = {Sat Jun 30 00:00:00 EDT 2018},
month = {Sat Jun 30 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanotechnology: Thin solid films roll up into nanotubes
journal, March 2001

  • Schmidt, Oliver G.; Eberl, Karl
  • Nature, Vol. 410, Issue 6825, Article No. 168
  • DOI: 10.1038/35065525

A critical literature review of focused electron beam induced deposition
journal, October 2008

  • van Dorp, W. F.; Hagen, C. W.
  • Journal of Applied Physics, Vol. 104, Issue 8
  • DOI: 10.1063/1.2977587

The 2017 Magnetism Roadmap
journal, August 2017

  • Sander, D.; Valenzuela, S. O.; Makarov, D.
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 36
  • DOI: 10.1088/1361-6463/aa81a1

Nanoporous alumina as templates for multifunctional applications
journal, September 2014

  • Sousa, C. T.; Leitao, D. C.; Proenca, M. P.
  • Applied Physics Reviews, Vol. 1, Issue 3
  • DOI: 10.1063/1.4893546

Modelling focused electron beam induced deposition beyond Langmuir adsorption
journal, January 2017

  • Sanz-Hernández, Dédalo; Fernández-Pacheco, Amalio
  • Beilstein Journal of Nanotechnology, Vol. 8
  • DOI: 10.3762/bjnano.8.214

Magnetic multilayers on nanospheres
journal, February 2005

  • Albrecht, Manfred; Hu, Guohan; Guhr, Ildico L.
  • Nature Materials, Vol. 4, Issue 3
  • DOI: 10.1038/nmat1324

Gas-assisted focused electron beam and ion beam processing and fabrication
journal, January 2008

  • Utke, Ivo; Hoffmann, Patrik; Melngailis, John
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 26, Issue 4
  • DOI: 10.1116/1.2955728

Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition
journal, May 2016


Nanocolumnar Interfaces and Enhanced Magnetic Coercivity in Preferentially oriented Cobalt Ferrite Thin Films Grown Using Oblique-Angle Pulsed Laser Deposition
journal, July 2013

  • Mukherjee, Devajyoti; Hordagoda, Mahesh; Hyde, Robert
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 15
  • DOI: 10.1021/am401771z

Element-Specific X-Ray Phase Tomography of 3D Structures at the Nanoscale
journal, March 2015


CASINO V2.42—A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users
journal, January 2007

  • Drouin, Dominique; Couture, Alexandre Réal; Joly, Dany
  • Scanning, Vol. 29, Issue 3
  • DOI: 10.1002/sca.20000

Fabrication, Detection, and Operation of a Three-Dimensional Nanomagnetic Conduit
journal, September 2017

  • Sanz-Hernández, Dédalo; Hamans, Ruben F.; Liao, Jung-Wei
  • ACS Nano, Vol. 11, Issue 11
  • DOI: 10.1021/acsnano.7b05105

Fourier magnetic imaging
journal, August 2011

  • Verduci, T.; Rufo, C.; Berger, A.
  • Applied Physics Letters, Vol. 99, Issue 9
  • DOI: 10.1063/1.3630049

High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)
journal, February 2018

  • Fowlkes, Jason D.; Winkler, R.; Lewis, Brett B.
  • ACS Applied Nano Materials, Vol. 1, Issue 3
  • DOI: 10.1021/acsanm.7b00342

Three-dimensional nanomagnetism
journal, June 2017

  • Fernández-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15756

High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals
journal, February 2018

  • Winkler, R.; Lewis, B. B.; Fowlkes, J. D.
  • ACS Applied Nano Materials, Vol. 1, Issue 3
  • DOI: 10.1021/acsanm.8b00158

Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID)
journal, May 2016


Direct-write of free-form building blocks for artificial magnetic 3D lattices
journal, April 2018


Invited article: Vector and Bragg Magneto-optical Kerr effect for the analysis of nanostructured magnetic arrays
journal, December 2007

  • Westphalen, A.; Lee, M. -S.; Remhof, A.
  • Review of Scientific Instruments, Vol. 78, Issue 12
  • DOI: 10.1063/1.2821148

Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport
journal, January 2012


Three dimensional magnetic nanowires grown by focused electron-beam induced deposition
journal, March 2013

  • Fernández-Pacheco, Amalio; Serrano-Ramón, Luis; Michalik, Jan M.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01492

Shifted hysteresis loops from magnetic nanowires
journal, November 2002

  • Allwood, D. A.; Vernier, N.; Xiong, Gang
  • Applied Physics Letters, Vol. 81, Issue 21
  • DOI: 10.1063/1.1523634

Three-dimensional nanomagnetism
text, January 2017

  • Fernández-Pacheco, A.; Streubel, R.; Fruchart, O.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.10808

Modelling focused electron beam induced deposition beyond Langmuir adsorption
text, January 2017

  • Sanz-Hernández, D.; Fernandez-Pacheco, Amalio
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.22996

High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)
text, January 2018

  • Fowlkes, J.; Winkler, R.; Lewis, B.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.23278

Fabrication, Detection, and Operation of a Three-Dimensional Nanomagnetic Conduit.
text, January 2017

  • Sanz-Hernández, Dédalo; Hamans, Ruben F.; Liao, Jung-Wei
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.24707

Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID)
journalarticle, January 2016

  • De Teresa, Jm; Fernández-Pacheco, A.; Córdoba, R.
  • IOP Publishing Group
  • DOI: 10.17863/cam.8187

Research data supporting "Fabrication, detection and operation of a three-dimensional nanomagnetic conduit"
dataset, January 2017

  • Sanz Hernandez, D.; Hamans, R.; Liao, Jw
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.10224

Research data supporting "Fabrication of scaffold-based 3D magnetic nanowires for domain wall applications"
dataset, January 2018

  • Sanz-Hernandez, D.; Hamans, Rf; Osterrieth, Johannes
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.24917

Research data supporting "Modelling focused electron beam induced deposition beyond Langmuir adsorption"
dataset, January 2017

  • Sanz-Hernandez, D.; Fernandez-Pacheco, Amalio
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.11214

Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport
journal, January 2012


CASINO V2.42—A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users
journal, January 2007

  • Drouin, Dominique; Couture, Alexandre Réal; Joly, Dany
  • Scanning, Vol. 29, Issue 3
  • DOI: 10.1002/sca.20000

High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals
journal, February 2018

  • Winkler, R.; Lewis, B. B.; Fowlkes, J. D.
  • ACS Applied Nano Materials, Vol. 1, Issue 3
  • DOI: 10.1021/acsanm.8b00158

Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition
journal, May 2016


Nanocolumnar Interfaces and Enhanced Magnetic Coercivity in Preferentially oriented Cobalt Ferrite Thin Films Grown Using Oblique-Angle Pulsed Laser Deposition
journal, July 2013

  • Mukherjee, Devajyoti; Hordagoda, Mahesh; Hyde, Robert
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 15
  • DOI: 10.1021/am401771z

Three-dimensional nanomagnetism
journal, June 2017

  • Fernández-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15756

Magnetic multilayers on nanospheres
journal, February 2005

  • Albrecht, Manfred; Hu, Guohan; Guhr, Ildico L.
  • Nature Materials, Vol. 4, Issue 3
  • DOI: 10.1038/nmat1324

Three dimensional magnetic nanowires grown by focused electron-beam induced deposition
journal, March 2013

  • Fernández-Pacheco, Amalio; Serrano-Ramón, Luis; Michalik, Jan M.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01492

Invited article: Vector and Bragg Magneto-optical Kerr effect for the analysis of nanostructured magnetic arrays
journal, December 2007

  • Westphalen, A.; Lee, M. -S.; Remhof, A.
  • Review of Scientific Instruments, Vol. 78, Issue 12
  • DOI: 10.1063/1.2821148

Fourier magnetic imaging
journal, August 2011

  • Verduci, T.; Rufo, C.; Berger, A.
  • Applied Physics Letters, Vol. 99, Issue 9
  • DOI: 10.1063/1.3630049

Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID)
journal, May 2016


The 2017 Magnetism Roadmap
journal, August 2017

  • Sander, D.; Valenzuela, S. O.; Makarov, D.
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 36
  • DOI: 10.1088/1361-6463/aa81a1

Gas-assisted focused electron beam and ion beam processing and fabrication
journal, January 2008

  • Utke, Ivo; Hoffmann, Patrik; Melngailis, John
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 26, Issue 4
  • DOI: 10.1116/1.2955728

Modelling focused electron beam induced deposition beyond Langmuir adsorption
text, January 2017

  • Sanz-Hernández, D.; Fernandez-Pacheco, Amalio
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.22996

Fabrication, detection and operation of a three-dimensional nanomagnetic conduit
text, January 2017


Works referencing / citing this record:

3D nanoprinting via focused electron beams
journal, June 2019

  • Winkler, R.; Fowlkes, J. D.; Rack, P. D.
  • Journal of Applied Physics, Vol. 125, Issue 21
  • DOI: 10.1063/1.5092372

Launching a new dimension with 3D magnetic nanostructures
journal, January 2020

  • Fischer, Peter; Sanz-Hernández, Dédalo; Streubel, Robert
  • APL Materials, Vol. 8, Issue 1
  • DOI: 10.1063/1.5134474

Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review
journal, December 2019

  • Plank, Harald; Winkler, Robert; Schwalb, Christian H.
  • Micromachines, Vol. 11, Issue 1
  • DOI: 10.3390/mi11010048

Magnetic nanowires and nanotubes
text, January 2018