skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The basic matrix library (BML) for quantum chemistry

Abstract

The basic matrix library package (BML) provides a common application programming interface (API) for linear algebra and matrix functions in C and Fortran for quantum chemistry codes. The BML API is matrix format independent. Currently the dense, compressed sparse row, and ELLPACK-R sparse matrix data types are available, each with different implementations. We show how the second-order spectral projection (SP2) algorithm used to compute the electronic structure of a molecular system represented with a tight-binding Hamiltonian can be successfully implemented with the aid of this library.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2];  [3];  [4];  [5];  [2]; ORCiD logo [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); SUSE Linux GmbH, Nurnberg (Germany)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Univ. of Bremen (Germany)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  5. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1470853
Alternate Identifier(s):
OSTI ID: 1489947
Report Number(s):
LA-UR-17-29481
Journal ID: ISSN 0920-8542
Grant/Contract Number:  
AC05-00OR22725; 89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Supercomputing
Additional Journal Information:
Journal Volume: 74; Journal Issue: 11; Journal ID: ISSN 0920-8542
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; Computer Science

Citation Formats

Bock, Nicolas, Negre, Christian F. A., Mniszewski, Susan M., Mohd-Yusof, Jamaludin, Aradi, Bálint, Fattebert, Jean-Luc, Osei-Kuffuor, Daniel, Germann, Timothy C., and Niklasson, Anders M. N. The basic matrix library (BML) for quantum chemistry. United States: N. p., 2018. Web. doi:10.1007/s11227-018-2533-0.
Bock, Nicolas, Negre, Christian F. A., Mniszewski, Susan M., Mohd-Yusof, Jamaludin, Aradi, Bálint, Fattebert, Jean-Luc, Osei-Kuffuor, Daniel, Germann, Timothy C., & Niklasson, Anders M. N. The basic matrix library (BML) for quantum chemistry. United States. doi:10.1007/s11227-018-2533-0.
Bock, Nicolas, Negre, Christian F. A., Mniszewski, Susan M., Mohd-Yusof, Jamaludin, Aradi, Bálint, Fattebert, Jean-Luc, Osei-Kuffuor, Daniel, Germann, Timothy C., and Niklasson, Anders M. N. Fri . "The basic matrix library (BML) for quantum chemistry". United States. doi:10.1007/s11227-018-2533-0. https://www.osti.gov/servlets/purl/1470853.
@article{osti_1470853,
title = {The basic matrix library (BML) for quantum chemistry},
author = {Bock, Nicolas and Negre, Christian F. A. and Mniszewski, Susan M. and Mohd-Yusof, Jamaludin and Aradi, Bálint and Fattebert, Jean-Luc and Osei-Kuffuor, Daniel and Germann, Timothy C. and Niklasson, Anders M. N.},
abstractNote = {The basic matrix library package (BML) provides a common application programming interface (API) for linear algebra and matrix functions in C and Fortran for quantum chemistry codes. The BML API is matrix format independent. Currently the dense, compressed sparse row, and ELLPACK-R sparse matrix data types are available, each with different implementations. We show how the second-order spectral projection (SP2) algorithm used to compute the electronic structure of a molecular system represented with a tight-binding Hamiltonian can be successfully implemented with the aid of this library.},
doi = {10.1007/s11227-018-2533-0},
journal = {Journal of Supercomputing},
number = 11,
volume = 74,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Computational science: ...Error
journal, October 2010


Techniques for Exploiting the Sparsity or the Network Admittance Matrix
journal, December 1963

  • Sato, Nobou; Tinney, W.
  • IEEE Transactions on Power Apparatus and Systems, Vol. 82, Issue 69
  • DOI: 10.1109/TPAS.1963.291477

Computation of the Density Matrix in Electronic Structure Theory in Parallel on Multiple Graphics Processing Units
journal, November 2014

  • Cawkwell, M. J.; Wood, M. A.; Niklasson, Anders M. N.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 12
  • DOI: 10.1021/ct5008229

A general parallel sparse-blocked matrix multiply for linear scaling SCF theory
journal, June 2000


Improving the Performance of the Sparse Matrix Vector Product with GPUs
conference, June 2010

  • Vázquez, F.; Ortega, G.; Fernández, J. J.
  • 2010 IEEE 10th International Conference on Computer and Information Technology (CIT), 2010 10th IEEE International Conference on Computer and Information Technology
  • DOI: 10.1109/CIT.2010.208

Expansion algorithm for the density matrix
journal, October 2002


DFTB+, a Sparse Matrix-Based Implementation of the DFTB Method
journal, July 2007

  • Aradi, B.; Hourahine, B.; Frauenheim, Th.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 26
  • DOI: 10.1021/jp070186p

Efficient Parallel Linear Scaling Construction of the Density Matrix for Born–Oppenheimer Molecular Dynamics
journal, September 2015

  • Mniszewski, S. M.; Cawkwell, M. J.; Wall, M. E.
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 10
  • DOI: 10.1021/acs.jctc.5b00552

Best Practices for Scientific Computing
journal, January 2014


Simplified LCAO Method for the Periodic Potential Problem
journal, June 1954


A simplified density matrix minimization for linear scaling self-consistent field theory
journal, February 1999

  • Challacombe, Matt
  • The Journal of Chemical Physics, Vol. 110, Issue 5
  • DOI: 10.1063/1.477969

Efficient Computation of Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library
journal, September 2017

  • Mohr, Stephan; Dawson, William; Wagner, Michael
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 10
  • DOI: 10.1021/acs.jctc.7b00348

Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition
journal, September 1978

  • Gustavson, Fred G.
  • ACM Transactions on Mathematical Software, Vol. 4, Issue 3
  • DOI: 10.1145/355791.355796

Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations
journal, June 2016

  • Negre, Christian F. A.; Mniszewski, Susan M.; Cawkwell, Marc J.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 7
  • DOI: 10.1021/acs.jctc.6b00154

An Optimized Sparse Approximate Matrix Multiply for Matrices with Decay
journal, January 2013

  • Bock, Nicolas; Challacombe, Matt
  • SIAM Journal on Scientific Computing, Vol. 35, Issue 1
  • DOI: 10.1137/120870761

Quantum theory of cohesive properties of solids
journal, January 1956


Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units
journal, October 2012

  • Cawkwell, M. J.; Sanville, E. J.; Mniszewski, S. M.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 11
  • DOI: 10.1021/ct300442w

Direct solutions of sparse network equations by optimally ordered triangular factorization
journal, January 1967


Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
journal, September 1998

  • Elstner, M.; Porezag, D.; Jungnickel, G.
  • Physical Review B, Vol. 58, Issue 11, p. 7260-7268
  • DOI: 10.1103/PhysRevB.58.7260

A parallel block implementation of Level-3 BLAS for MIMD vector processors
journal, June 1994

  • Daydé, Michel J.; Duff, Iain S.; Petitet, Antoine
  • ACM Transactions on Mathematical Software, Vol. 20, Issue 2
  • DOI: 10.1145/178365.174413